Skip to main content
Log in

Effect of Boron on Carbide Coarsening at 873 K (600 °C) in 9 to 12 pct Chromium Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The addition of small amounts of boron to 9 to 12 pct chromium steels has been found to decrease their creep rate at 823 K to 923 K (550 °C to 650 °C). In this article, the behavior of boron during austenitizing, tempering, and isothermal heat treatment at 873 K (600 °C) is studied using high-resolution microscopy and microanalysis as well as using atomistic modeling. It was found that increasing the boron content from 9 to 40 ppm decreased the coarsening constant of M23C6 by a factor of almost 2. Most of the added boron was incorporated in M23C6. Atomistic modeling showed that boron diffusion in ferrite is dominated by an interstitial mechanism at 873 K (600 °C). However, the generation of vacancies when carbide precipitates dissolve may promote a distribution with substitutional boron atoms. The absence of a fast mechanism for the transition from substitutional to interstitial occupancy will make the slow substitutional boron diffusion in the matrix rate controlling for the coarsening process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Blum, J. Hald, W. Bendick, A. Rosselet, and J.C. Vaillant: VGB Kraftw. Tech., 1994, vol. 74, pp. 641–52.

    CAS  Google Scholar 

  2. T.-U. Kern, K.H. Mayer, B. Donth, G. Zeiler, and A. DiGianfrancesco: 9th Liege Conference: Materials for Advanced Power Engineering, J. Lecomte-Beckers, Q. Contrepois, T. Beck, and B. Kuhn, eds., Liege, Belgium, 2010, pp. 29–38.

  3. J. Hald: 9th Liege Conference: Materials for Advanced Power Engineering, J. Lecomte-Beckers, Q. Contrepois, T. Beck, and B. Kuhn, eds., Liege, Belgium, 2010, pp. 55–66.

  4. F. Abe, M. Tabuchi, S. Tsukamoto, and T. Shirane: Int. J. Press. Ves. Pip., 2010, vol. 87, pp. 598–604.

    Article  CAS  Google Scholar 

  5. F. Abe: Creep-Resistant Steels, T.-U. Kern and R. Viswanathan, eds., Woodhead Publishing Limited, Cambridge, U.K., 2008, pp. 279–301.

  6. J.F. Mansfield: J. Mater.Sci., 1987, vol. 22, pp. 1277–85.

    Article  CAS  Google Scholar 

  7. K. Maruyama, K. Sawada, and J.-I. Koike: ISIJ Int., 2001, vol. 41, pp. 641–53.

    Article  CAS  Google Scholar 

  8. L. Lundin, S. Fällman, and H.-O. Andrén: Mater. Sci. Technol., 1997, vol. 13, pp. 233–42.

    Article  CAS  Google Scholar 

  9. M. Hättestrand, M. Schwind, and H.-O. Andrén: Mater. Sci. Eng. A, 1998, vol. 250, pp. 27–36.

    Article  Google Scholar 

  10. M. Hättestrand, H.-O. Andrén, L. Lundin, and M. Schwind: Mater. Sci. Eng. A, 1999, vol. 270, pp. 33–37.

    Article  Google Scholar 

  11. M. Hättestrand, M. Schwind, and H.-O. Andrén: Advanced Heat Resistant Steels for Power Generation, R. Viswanathan and J. Nutting, eds., IOM Communications Ltd., London, U.K., 1999, p. 199.

  12. L. Lundin, M. Hättestrand, and H.-O. Andrén: Parsons 2000 Advanced Materials for 21st Century Turbines and Power Plants, A. Strang, W.M. Banks, R.D. Conroy, G.M. McColvin, J.C. Neal, and S. Simpson, eds., The Institute of Materials, London, U.K., 2000, pp. 603–17.

  13. A. Golpayegani, M. Hättestrand, and H.-O. Andrén: Parsons 2003 Engineering Issues in Turbine Machinery, Power Plant and Renewables, A. Strang, R.D. Conroy, W.M. Banks, M. Blacker, J. Legget, G.M. McColvin, S. Simpson, M. Smith, F. Starr, and R.W. Vanstone, eds., The Institute of Materials, Dublin, Ireland, 2003, pp. 347–63.

  14. A. Golpayegani and H.-O. Andrén: Parsons 2007, Power Generation in an Era of Climate Change, A. Strang, W.M. Banks, G.M. McColvin, J.E. Oakley, and R.W. Vanstone, eds., London, U.K., 2007, pp. 533–41.

  15. H.-O. Andrén and A. Golpayegani: New Developments on Metallurgy and Applications of High Strength Steels, Buenos Aires, Argentina, 2008, p. 16.

  16. A. Golpayegani, F. Liu, H. Svensson, M. Andersson, and H.-O. Andrén: Metall. Mater. Trans, A, 2011, vol. 42A, pp. 940–51.

    Article  Google Scholar 

  17. P. Warbichler, F. Hofer, P. Hofer, and E. Letofsky: Micron, 1998, vol. 29, pp. 63–72.

    Article  CAS  Google Scholar 

  18. M. Hättestrand and H.-O. Andrén: Micron, 2001, vol. 32, pp. 789–97.

    Article  Google Scholar 

  19. B. Sonderegger: Ultramicroscopy, 2006, vol. 106, pp. 941–50.

    Article  CAS  Google Scholar 

  20. G. Kresse and J. Hafner: Phys. Rev. B, 1994, vol. 49, pp. 14251–69.

    Article  CAS  Google Scholar 

  21. G. Kresse and J. Furthmuller: Phys. Rev. B, 1996, vol. 54, pp. 11169–86.

    Article  CAS  Google Scholar 

  22. G. Kresse and J. Furthmuller: Comput. Mater. Sci., 1996, vol. 6, pp. 15–50.

    Article  CAS  Google Scholar 

  23. J.P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1996, vol. 77, pp. 3865–68.

    Article  CAS  Google Scholar 

  24. G. Kresse and D. Joubert: Phys. Rev. B, 1999, vol. 59, pp. 1758–75.

    Article  CAS  Google Scholar 

  25. F. Liu and H.-O. Andrén: Ultramicoscopy, 2011, vol. 111, pp. 633–41.

    Article  CAS  Google Scholar 

  26. M. Thuvander, J. Weidow, J. Angseryd, L.K.L. Falk, F. Liu, M. Sonestedt, K. Stiller, and H.-O. Andrén: Ultramicoscopy, 2011, vol. 111, pp. 604–08.

    Article  CAS  Google Scholar 

  27. O.C. Hellman, J.A. Vandenbroucke, J. Rusing, D. Isheim, and D.N. Seidman: Microsc. Microanal., 2000, vol. 6, pp. 437–44.

    CAS  Google Scholar 

  28. D.H.R. Fors and G. Wahnstrom: Phys. Rev. B, 2008, vol. 82, p. 195410.

    Article  Google Scholar 

  29. H. Hirota: J. Phys. Soc. Jpn. 1967, vol. 23, p. 512.

    Article  CAS  Google Scholar 

  30. A.L. Bowman, G.P. Arnold, E.K. Storms, and N.G. Nereson: Acta Crystallogr. Sect. B-Struct. Crystallogr. Cryst. Chem. B, 1972, vol. 28, p. 3102.

  31. F. Abe: Int. J. Mater. Res., 2008, pp. 387–94.

  32. L. Karlsson and H. Nordén: Acta Metall., 1988, vol. 36, pp. 13–24.

    Article  CAS  Google Scholar 

  33. K. Sakuraya, H. Okada, and F. Abe: The 4 th Int. Conf. on Advances in Materials Technology for Possil Power Plants, ASM International, Hilton Head Island, SC, 2004, pp. 1270–79.

    Google Scholar 

  34. M. Hättestrand and A. Bjärbo: Metall. Mater. Trans. A, 2001, vol. 32A, p. 19.

    Google Scholar 

  35. T. Horiuchi, M. Igarashi, and F. Abe: ISIJ Int., 2002, vol. 42, pp. 67–71.

    Article  Google Scholar 

  36. J. Hald and L. Korcakova: ISIJ Int., 2003, vol. 43, pp. 420–27.

    Article  CAS  Google Scholar 

  37. A. Umantsev and G.B. Olson: Scripta Metall. Mater., 1993, vol. 29, pp. 1135–40.

    Article  CAS  Google Scholar 

  38. J. Ågren, M.T. Clavaguera-Mora, J. Golcheski, G. Inden, H. Kumar, and C. Sigli: CALPHAD, 2000, vol. 24, pp. 41–54.

    Article  Google Scholar 

  39. H. Semba and F. Abe: The 4 th Int. Conf. on Advances in Materials Technology for Possil Power Plants, R. Viswanathan, D. Gandy, and K. Coleman, eds., ASM International, Hilton Head Island, SC, 2004, p. 1229.

Download references

Acknowledgments

Close collaboration with John Ågren, Rolf Sandström, and Hans Magnusson of Royal Institute of Technology, Stockholm, within the CROX project is gratefully acknowledged. Lennart Johansson of Siemens Industrial Turbomachinery is thanked for providing steels KP and KB. Mr K.H. Mayer of ALSTOM Energie Germany and Dr F. Kauffmann of MPA University Stuttgart are acknowledged for providing the TAF B material. Financial support by KME, the Consortium for Materials Technology in Thermal Energy Processes, as well as the Research Foundation of VGB-FORSCHUNGSSTIFTUNG in Germany and the Swedish Foundation for Strategic Research (SSF) is gratefully acknowledged. This work was part of the European COST536 action and collaboration of all members is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Liu.

Additional information

Manuscript submitted October 14, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F., Fors, D.H., Golpayegani, A. et al. Effect of Boron on Carbide Coarsening at 873 K (600 °C) in 9 to 12 pct Chromium Steels. Metall Mater Trans A 43, 4053–4062 (2012). https://doi.org/10.1007/s11661-012-1205-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1205-6

Keywords

Navigation