Skip to main content
Log in

Understanding Partitioning and Segregation of Boron in Continuously Cast Slabs of 27MnB5 Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Trace addition of boron at approximate 40 ppm can have a significant effect on strength of steels. This research addresses B distribution in a continuously cast slab of 27MnB5 steel using nanoscale secondary ion mass spectrometry and atom probe tomography, to understand the segregation and partitioning of boron in main microstructural features of the steel. Unlike quenched plates, the slab develops boron enrichment in Ti(CN) precipitates, some cementite particles, or primary-austenite grain boundaries (PAGBs) depending on local cooling rate. The high-temperature Ti(CN) precipitates with partitioning of B implies that the precipitates should be taken into account for effective B addition in the steel. Partitioning of B atoms into cementite on/near the PAGBs in proeutectoid ferrite under slow cooling is responsible for desegregation of B at the PAGBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. M. Sharma, I. Ortlepp, and W. Bleck: Steel Res. Int., 2019, vol. 90, p. 1900133.

    Article  CAS  Google Scholar 

  2. B.M. Kapadia: J. Heat Treat., 1987, vol. 5, pp. 41–53.

    Article  CAS  Google Scholar 

  3. O.T. Kawamura and T. Furukawa: Trans. Iron Steel Inst. Jpn., 1976, vol. 16, pp. 538–44.

    Article  Google Scholar 

  4. A. Terzic, M. Calcagnotto, S. Guk, T. Schulz, and R. Kawalla: Mater. Sci. Eng. A, 2013, vol. 584, pp. 32–40.

    Article  CAS  Google Scholar 

  5. S. Koley, A. Karani, S. Chatterjee, and M. Shome: J. Mater. Eng. Perform., 2018, vol. 27, pp. 3449–59.

    Article  CAS  Google Scholar 

  6. A. Brown, J.D. Garnish, and R.W.K. Honeycombe: Met. Sci., 1974, vol. 8, pp. 317–24.

    Article  CAS  Google Scholar 

  7. T.M. Williams, A.M. Stoneham, and D.R. Harries: Met. Sci., 1976, vol. 10, pp. 14–19.

    Article  CAS  Google Scholar 

  8. X.M. Wang and X.L. He: ISIJ Int., 2007, vol. 42, pp. 38–46.

    Article  Google Scholar 

  9. N. Di Luozzo, M. Schulz, and M. Fontana: J. Mater. Sci., 2020, vol. 55, pp. 7927–37.

    Article  Google Scholar 

  10. G. Shigesato, T. Fujishiro, and T. Hara: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 1876–82.

    Article  Google Scholar 

  11. D.J. Mun, E.J. Shin, K.C. Cho, J.S. Lee, and Y.M. Koo: Metall. Mater. Trans. A, 2011, vol. 43A, pp. 1639–48.

    Google Scholar 

  12. A.R.S.K. Yin and T. Mitsuru: J Iron Steel Res Int., 2013, vol. 20, pp. 99–103.

    Article  Google Scholar 

  13. H.G.S.K. Yamamoto, Y. Oono, N. Noda, and T. Inoue: ISIJ Int., 1987, vol. 73, pp. 115–22.

    CAS  Google Scholar 

  14. Y. Chen, Y. Bao, M. Wang, X. Cai, L. Wang, and L. Zhao: ISIJ Int., 2014, vol. 54, pp. 2215–20.

    Article  CAS  Google Scholar 

  15. H. Zhu, J. Sun, W. Wang, W. Wang, J. Lei, and Z. Xue: Results Phys., 2019, vol. 12, pp. 67–72.

    Article  Google Scholar 

  16. H.K.D.H. Bhadeshia: Int. Mater. Rev., 2019, vol. 65, pp. 1–27.

    Article  Google Scholar 

  17. J. Lentz, A. Röttger, and W. Theisen: Mater. Charact., 2018, vol. 135, pp. 192–202.

    Article  CAS  Google Scholar 

  18. Y.S. Choi, S.J. Kim, I.M. Park, K.W. Kwon, and I.S. Yoo: Met. Mater., 1997, vol. 3, pp. 118–24.

    Article  CAS  Google Scholar 

  19. P. Kontis, H.A.M. Yusof, S. Pedrazzini, M. Danaie, K.L. Moore, P.A.J. Bagot, M.P. Moody, C.R.M. Grovenor, and R.C. Reed: Acta Mater., 2016, vol. 103, pp. 688–99.

    Article  CAS  Google Scholar 

  20. Y.S. Zhao, J. Zhang, Y.S. Luo, B. Zhang, G. Sha, L.F. Li, D.Z. Tang, and Q. Feng: Acta Mater., 2019, vol. 176, pp. 109–22.

    Article  CAS  Google Scholar 

  21. X.H. Guo, Y.D. Zhang, S.B. Jin, R. Hu, Z.W. Liu, R.Q. Zhang, and G. Sha: Mater. Chem. Phys., 2019, vol. 236, p. 121783.

    Article  CAS  Google Scholar 

  22. G. Da Rosa, P. Maugis, A. Portavoce, J. Drillet, N. Valle, E. Lentzen, and K. Hoummada: Acta Mater., 2020, vol. 182, pp. 226–34.

    Article  Google Scholar 

  23. G. Miyamoto, A. Goto, N. Takayama, and T. Furuhara: Scripta Mater., 2018, vol. 154, pp. 168–71.

    Article  CAS  Google Scholar 

  24. T. Osanai, N. Sekido, M. Yonemura, K. Maruyama, M. Takeuchi, and K. Yoshimi: Mater. Charact., 2021, vol. 177, p. 111192.

    Article  CAS  Google Scholar 

  25. J.B. Seol, N.S. Lim, B.H. Lee, L. Renaud, and C.G. Park: Met. Mater. Int., 2011, vol. 17, pp. 413–16.

    Article  CAS  Google Scholar 

  26. J.Q. Xu, Y.Z. Liu, and S.M. Zhou: J Iron Steel Res Int., 2008, vol. 15, pp. 57–60.

    Article  CAS  Google Scholar 

  27. S. Lozano-Perez, M. Schröder, T. Yamada, T. Terachi, C.A. English, and C.R.M. Grovenor: Appl. Surf. Sci., 2008, vol. 255, pp. 1541–43.

    Article  CAS  Google Scholar 

  28. N. Valle, J. Drillet, A. Pic, and H.N. Migeon: Surf. Interface Anal., 2011, vol. 43, pp. 573–75.

    Article  CAS  Google Scholar 

  29. J. Drillet, N. Valle, and T. Iung: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 4947–56.

    Article  Google Scholar 

  30. S. Ahmed, J.M. Titchmarsh, M.R. Kilburn, and C.R.M. Grovenor: Appl. Surf. Sci., 2006, vol. 252, pp. 7062–65.

    Article  CAS  Google Scholar 

  31. T.M.W.A.M.S.D.R. Harries: Met. Sci., 1976, vol. 10, pp. 14–19.

    Article  Google Scholar 

  32. S.R. Keown and F.B. Pickering: Met. Sci, 1977, vol. 11, pp. 225–34.

    Article  CAS  Google Scholar 

  33. S.W. Yang and X.L. He: Acta Metall. Sin., 1999, vol. 35, pp. 23–26.

    CAS  Google Scholar 

  34. P.K. Ajikumar, M. Kamruddin, S. Kalavathi, A.K. Balamurugan, S. Kataria, P. Shankar, and A.K. Tyagi: Ceram. Int., 2012, vol. 38, pp. 2253–59.

    Article  CAS  Google Scholar 

  35. G. Levi, W. Kaplan, and M. Bamberger: Mater. Lett., 1998, vol. 35, pp. 344–50.

    Article  CAS  Google Scholar 

  36. D.A. Andersson, P.A. Korzhavyi, and B. Johansson: Calphad, 2008, vol. 32, pp. 543–65.

    Article  CAS  Google Scholar 

  37. H. Ding, H. Li, and X. Liu: J. Alloy Compd., 2009, vol. 485, pp. 285–89.

    Article  CAS  Google Scholar 

  38. C. Philippot, K. Hoummada, M. Dumont, J. Drillet, V. Hebert, and P. Maugis: Comput. Mater. Sci., 2015, vol. 106, pp. 64–68.

    Article  CAS  Google Scholar 

  39. N.M. E., JOM 1957, vol. 9, pp. 1–6.

Download references

Acknowledgments

Authors would like to thank Nanjing iron and steel Co., Ltd, for sponsoring this research project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shenbao Jin or Gang Sha.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1076 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Jin, S., Yan, Q. et al. Understanding Partitioning and Segregation of Boron in Continuously Cast Slabs of 27MnB5 Steel. Metall Mater Trans A 53, 4499–4508 (2022). https://doi.org/10.1007/s11661-022-06845-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06845-5

Navigation