Skip to main content
Log in

Microstructural Evaluation, Mechanical Properties, and Corrosion Behavior of the Al/Cu/Brass Multilayered Composite Produced by the ARB Process

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The current study used the ARB method to fabricate multilayer Al/Cu/Brass composites. For this purpose, the ARB process was performed at six passes at room temperature without inter-passes heat treatment. X-ray diffraction (XRD) analysis showed that the intermetallic phase was not formed during rolling. Microstructural examination showed that the brass and Cu layers are fractured in the Al matrix after the second cycle. Mechanical tests such as tensile tests in RD and TD directions, microhardness, wear tests under three loads (10, 20, and 30 N), TOEFL, and impedance corrosion tests have been performed. The results revealed that increasing the ARB cycles increases the samples’ ultimate tensile strength and hardness. The related maximum values were obtained for the 6th cycle, equal to 288 MPa and 260 HV, respectively. The wear test results illustrated that the wear rate decreases significantly by increasing the ARB cycles and reaches a minimum in the 6th cycle, signifying that the wear resistance of the Al/Cu/Brass composite has increased significantly compared to the Al alloys. The worn surfaces were studied under a scanning electron microscope (SEM). The dominant wear mechanisms were delamination and oxidation. The corrosion test results indicated that increasing the ARB cycles up to the 5th cycle increases the corrosion resistance and then decreases.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. N. Chawla, K.K. Chawla, Metal Matrix Composites, 2nd edn. (Springer, New York, 2013). https://doi.org/10.1007/978-1-4614-9548-2

    Article  Google Scholar 

  2. G.N.M. Rao, V.R.M. Kumar, A review on recent advances in accumulative roll bonding of similar, dissimilar and metal matrix composites. Mater. Today Proc. 56, A13–A18 (2022). https://doi.org/10.1016/j.matpr.2021.11.608

    Article  CAS  Google Scholar 

  3. L. Song, H. Gao, L. Bhatt, C. Kong, H. Yu, Microstructure and mechanical properties of AA1050/AA6061 multilayer composites via accumulative roll bonding and cryorolling and subsequent aging. Mater. Sci. Eng. A 874, 145069 (2023). https://doi.org/10.1016/j.msea.2023.145069

    Article  CAS  Google Scholar 

  4. D. Kumar, L. Thakur, Investigation on mechanical and wear performance of Ultrasonic-assisted stir cast AZ91D/Al2O3 magnesium matrix composites. Met. Mater. Int. 29, 2767–2781 (2023). https://doi.org/10.1007/s12540-023-01395-w

    Article  CAS  Google Scholar 

  5. L. Wang, T. Wu, D. Wang, Z. Liang, X. Yang, Z. Peng, Y. Liu, Y. Liang, Z. Zeng, J.P. Oliveira, A novel heterogeneous multi-wire indirect arc directed energy deposition for in-situ synthesis Al–Zn–Mg–Cu alloy: process, microstructure and mechanical properties. Addit. Manuf. 72, 103639 (2023). https://doi.org/10.1016/j.addma.2023.103639

    Article  CAS  Google Scholar 

  6. M. Qiu, W. Hu, H. Liu, Y. Pang, X. Du, Mechanical properties of (ce + yb) modified in situ TiB2/Al-Si Matrix composites enhanced via Thermal deformation combined with Heat Treatment. Met. Mater. Int. 29, 3078–3092 (2023). https://doi.org/10.1007/s12540-023-01425-7

    Article  CAS  Google Scholar 

  7. D. Zhao, C. Jiang, K. Zhao, Ultrasonic welding of AZ31B magnesium alloy and pure copper: microstructure, mechanical properties and finite element analysis. J. Mater. Res. Technol. 23, 1273–1284 (2023). https://doi.org/10.1016/j.jmrt.2023.01.095

    Article  CAS  Google Scholar 

  8. M.M. Sadawy, S.M. Fayed, M. Tayea, I.G. El-Batanony, Microstructure, corrosion and electrochemical properties of Cu/SiC composites in 3.5 wt% NaCl solution. Met. Mater. Int. (2023). https://doi.org/10.1007/s12540-023-01521-8

    Article  Google Scholar 

  9. H.I. Kurt, M. Oduncuoglu, R. Asmatulu, Wear behavior of aluminum matrix hybrid composites fabricated through friction stir welding process. J. Iron Steel Res. Int. 23, 1119–1126 (2016). https://doi.org/10.1016/S1006-706X(16)30165-0

    Article  Google Scholar 

  10. A.M. Rajesh, M. Kaleemulla, Experimental investigations on mechanical behavior of aluminium metal matrix composites. IOP Conf. Ser. Mater. Sci. Eng. 149, 012121 (2016). https://doi.org/10.1088/1757-899X/149/1/012121

    Article  Google Scholar 

  11. C. Velmurugan, R. Subramanian, S. Thirugnanam, B. Anandavel, Investigation of friction and wear behavior of hybrid aluminium composites. Ind. Lubr. Tribol. 64, 152–163 (2012). https://doi.org/10.1108/00368791211218687

    Article  Google Scholar 

  12. A.M. Sankhla, K.M. Patel, M.A. Makhesana, K. Giasin, D.Y. Pimenov, S. Wojciechowski, N. Khanna, Effect of mixing method and particle size on hardness and compressive strength of aluminium based metal matrix composite prepared through powder metallurgy route. J. Mater. Res. Technol. 18, 282–292 (2022). https://doi.org/10.1016/j.jmrt.2022.02.094

    Article  CAS  Google Scholar 

  13. N. Panwar, A. Chauhan, Fabrication methods of particulate reinforced Aluminium metal matrix composite: a review. Mater. Today Proc. 5, 5933–5939 (2018). https://doi.org/10.1016/j.matpr.2017.12.194

    Article  CAS  Google Scholar 

  14. U.K.G.B. Annigeri Veeresh Kumar, Method of stir casting of aluminum metal matrix composites: a review. Mater. Today Proc. 4, 1140–1146 (2017). https://doi.org/10.1016/j.matpr.2017.01.130

    Article  Google Scholar 

  15. Y. Zhao, J. Jing, L. Chen, F. Xu, H. Hou, Current research status of interface of ceramic-metal laminated composite material for armor protection. Acta Met. Sin. 57, 1107–1125 (2021). https://doi.org/10.11900/0412.1961.2021.00051

    Article  CAS  Google Scholar 

  16. F. Ferreira, I. Ferreira, E. Camacho, F. Lopes, A.C. Marques, A. Velhinho, Graphene oxide-reinforced aluminium-matrix nanostructured composites fabricated by accumulative roll bonding. Compos. Part B Eng. 164, 265–271 (2019). https://doi.org/10.1016/j.compositesb.2018.11.075

    Article  CAS  Google Scholar 

  17. R.H. Gao, F. Li, W.T. Niu, P.D. Huo, Response mechanism of mechanical behavior with mg plate microstructure evolution during Al/Mg/Al composite plate rolled by hard plate. Met. Mater. Int. 29, 2004–2016 (2023). https://doi.org/10.1007/s12540-022-01348-9

    Article  CAS  Google Scholar 

  18. C. Lin, S. Wang, H. Yan, Y. Han, J. Zhu, H. Shi, Optimization mechanisms of microstructure and mechanical properties of SiC fiber reinforced Ti/Al3Ti laminated composite synthesized using titanium barrier. Met. Mater. Int. 27, 306–318 (2021). https://doi.org/10.1007/s12540-020-00724-7

    Article  CAS  Google Scholar 

  19. L. Ghalandari, M.M. Mahdavian, M. Reihanian, M. Mahmoudiniya, Production of Al/Sn multilayer composite by accumulative roll bonding (ARB): a study of microstructure and mechanical properties. Mater. Sci. Eng. A 661, 179–186 (2016). https://doi.org/10.1016/j.msea.2016.02.070

    Article  CAS  Google Scholar 

  20. R.N. Dehsorkhi, F. Qods, M. Tajally, Investigation on microstructure and mechanical properties of Al–Zn composite during accumulative roll bonding (ARB) process. Mater. Sci. Eng. A 530, 63–72 (2011). https://doi.org/10.1016/j.msea.2011.09.040

    Article  CAS  Google Scholar 

  21. M. Tayyebi, M. Alizadeh, Structural, mechanical, and corrosion evaluations of Cu/Zn/Al multilayered composites subjected to CARB process. J. Alloys Compd. 867, 158973 (2021). https://doi.org/10.1016/j.jallcom.2021.158973

    Article  CAS  Google Scholar 

  22. J. Luo, M. Yarigarravesh, A.H. Assari, N.H. Amin, M. Tayyebi, M. Paidar, Investigating the solid-state diffusion at the interface of Ni/Ti laminated composite. J. Manuf. Process. 75, 670–681 (2022). https://doi.org/10.1016/j.jmapro.2022.01.042

    Article  Google Scholar 

  23. Y. Wang, M. Tayyebi, M. Tayebi, M. Yarigarravesh, S. Liu, H. Zhang, Effect of whisker alignment on microstructure, mechanical and thermal properties of Mg–SiCw/Cu composite fabricated by a combination of casting and severe plastic deformation (SPD). J. Magnes Alloy. 11, 966–980 (2023). https://doi.org/10.1016/j.jma.2022.11.004

    Article  CAS  Google Scholar 

  24. Y. Wang, P. Huang, S. Liu, M. Tayyebi, M. Tayebi, Microstructural evolution, shielding effectiveness, and the ballistic response of Mg/Al7075/B4C/Pb composite produced by combination of coating and severe plastic deformation (SPD) processes. J. Manuf. Process. 84, 977–985 (2022). https://doi.org/10.1016/j.jmapro.2022.10.062

    Article  Google Scholar 

  25. A.K. Talachi, M. Eizadjou, H.D. Manesh, K. Janghorban, Wear characteristics of severely deformed aluminum sheets by accumulative roll bonding (ARB) process. Mater. Charact. 62, 12–21 (2011). https://doi.org/10.1016/j.matchar.2010.10.003

    Article  CAS  Google Scholar 

  26. R. Jamaati, M. Naseri, M.R. Toroghinejad, Wear behavior of nanostructured Al/Al2O3 composite fabricated via accumulative roll bonding (ARB) process. Mater. Des. 59, 540–549 (2014). https://doi.org/10.1016/j.matdes.2014.03.027

    Article  CAS  Google Scholar 

  27. E. Darmiani, I. Danaee, M.A. Golozar, M.R. Toroghinejad, A. Ashrafi, A. Ahmadi, Reciprocating wear resistance of Al–SiC nano-composite fabricated by accumulative roll bonding process. Mater. Des. 50, 497–502 (2013). https://doi.org/10.1016/j.matdes.2013.03.047

    Article  Google Scholar 

  28. M. Tayyebi, M. Alizadeh, A novel two-step method for producing Al/Cu functionally graded metal matrix composite. J. Alloys Compd. 911, 165078 (2022). https://doi.org/10.1016/j.jallcom.2022.165078

    Article  CAS  Google Scholar 

  29. Y. Wang, M. Tayyebi, A. Assari, Fracture toughness, wear, and microstructure properties of aluminum/titanium/steel multi-laminated composites produced by cross-accumulative roll-bonding process. Arch. Civ. Mech. Eng. 22, 49 (2022). https://doi.org/10.1007/s43452-021-00355-8

    Article  Google Scholar 

  30. A. Fattah-alhosseini, S.O. Gashti, Passive behavior of ultra-fine-grained 1050 aluminum alloy produced by accumulative roll bonding in a borate buffer solution. Acta Metall. Sin. 28, 1222–1229 (2015). https://doi.org/10.1007/s40195-015-0316-7

    Article  CAS  Google Scholar 

  31. G. Anne, M.R. Ramesh, H. Shivananda Nayaka, S.B. Arya, S. Sahu, Microstructure evolution and mechanical and corrosion behavior of accumulative roll bonded Mg-2%Zn/Al-7075 multilayered composite. J. Mater. Eng. Perform. 26, 1726–1734 (2017). https://doi.org/10.1007/s11665-017-2576-z

    Article  CAS  Google Scholar 

  32. M. Kadkhodaee, M. Babaiee, H.D. Manesh, M. Pakshir, B. Hashemi, Evaluation of corrosion properties of Al/nanosilica nanocomposite sheet produced by accumulative roll bonding (ARB) process. J. Alloys Compd. 576, 66–71 (2013). https://doi.org/10.1016/j.jallcom.2013.04.090

    Article  CAS  Google Scholar 

  33. M.R.T.A. Nikfahm, I. Danaee, A. Ashraf, Effect of grain size changes on corrosion behavior of copper produced by accumulative roll bonding process. Mater. Res. 16, 1379–1386 (2013). https://doi.org/10.1590/S1516-14392013005000135

    Article  CAS  Google Scholar 

  34. A. Fattah-alhosseini, O. Imantalab, Effect of accumulative roll bonding process on the electrochemical behavior of pure copper. J. Alloys Compd. 632, 48–52 (2015). https://doi.org/10.1016/j.jallcom.2015.01.208

    Article  CAS  Google Scholar 

  35. M.M. Mahdavian, L. Ghalandari, M. Reihanian, Accumulative roll bonding of multilayered Cu/Zn/Al: an evaluation of microstructure and mechanical properties. Mater. Sci. Eng. A 579, 99–107 (2013). https://doi.org/10.1016/j.msea.2013.05.002

    Article  CAS  Google Scholar 

  36. L. Ghalandari, M.M. Mahdavian, M. Reihanian, Microstructure evolution and mechanical properties of Cu/Zn multilayer processed by accumulative roll bonding (ARB). Mater. Sci. Eng. A 593, 145–152 (2014). https://doi.org/10.1016/j.msea.2013.11.026

    Article  CAS  Google Scholar 

  37. A. Shabani, M.R. Toroghinejad, A. Shafyei, Fabrication of Al/Ni/Cu composite by accumulative roll bonding and electroplating processes and investigation of its microstructure and mechanical properties. Mater. Sci. Eng. A 558, 386–393 (2012). https://doi.org/10.1016/j.msea.2012.08.017

    Article  CAS  Google Scholar 

  38. L. Ghalandari, M.M. Moshksar, High-strength and high-conductive Cu/Ag multilayer produced by ARB. J. Alloys Compd. 506, 172–178 (2010). https://doi.org/10.1016/j.jallcom.2010.06.172

    Article  CAS  Google Scholar 

  39. L. Su, C. Lu, A.K. Tieu, G. Deng, X. Sun, Ultrafine grained AA1050/AA6061 composite produced by accumulative roll bonding. Mater. Sci. Eng. A 559, 345–351 (2013). https://doi.org/10.1016/j.msea.2012.08.109

    Article  CAS  Google Scholar 

  40. M.S. Bayati, H. Sharifi, M. Tayebi, T. Isfahani, Effect of Al–B4C nanocomposite filler manufactured by accumulative roll bonding (ARB) method on the microstructure and mechanical properties of weldings prepared by tungsten inert gas welding. Mater. Res. Express 6, 106529 (2019). https://doi.org/10.1088/2053-1591/ab33a0

    Article  Google Scholar 

  41. S. Pasebani, M.R. Toroghinejad, Nano-grained 70/30 brass strip produced by accumulative roll-bonding (ARB) process. Mater. Sci. Eng. A 527, 491–497 (2010). https://doi.org/10.1016/j.msea.2009.09.029

    Article  CAS  Google Scholar 

  42. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd edn. (Pergamon, Oxford, 2004)

  43. H. Park, J. Lee, R.E. Kim, S. Son, S.Y. Ahn, H.S. Kim, Effect of warm rolling on the structure and tensile properties of a metastable Fe-based medium entropy alloy. Met. Mater. Int. (2023). https://doi.org/10.1007/s12540-023-01532-5

    Article  Google Scholar 

  44. M.M. Mahdavian, A.R. Khodabandeh, H.R. Jafarian, S. Mirdamadi, Evaluation of the macro/microstructure of Al/Cu/Sn/Ni multi-layered composite produced by accumulative-roll-bonding (ARB) and post-heat treatment. J. Alloys Compd. 925, 166711 (2022). https://doi.org/10.1016/j.jallcom.2022.166711

    Article  CAS  Google Scholar 

  45. M.D. Gholami, M. Salamat, R. Hashemi, Study of mechanical properties and wear resistance of Al 1050/Brass (70/30)/Al 1050 composite sheets fabricated by the accumulative roll bonding process. J. Manuf. Process. 71, 407–416 (2021). https://doi.org/10.1016/j.jmapro.2021.09.032

    Article  Google Scholar 

  46. T. Huang, Z. Song, F. Chen, J. Guo, Y. Pei, B. Xing, N. Xiang, K. Song, Influence of the anisotropy on the microstructure and mechanical properties of Ti/Al laminated composites. Materials (Basel) 13, 3556 (2020). https://doi.org/10.3390/ma13163556

    Article  PubMed  PubMed Central  Google Scholar 

  47. M. Tayebi, S. Nategh, H. Najafi, A. Khodabandeh, Tensile properties and microstructure of ZK60/SiCw composite after extrusion and aging. J. Alloys Compd. 830, 154709 (2020). https://doi.org/10.1016/j.jallcom.2020.154709

    Article  CAS  Google Scholar 

  48. M. Tayebi, H. Najafi, S. Nategh, A. Khodabandeh, Creep behavior of ZK60 alloy and ZK60/SiCw composite after extrusion and precipitation hardening. Met. Mater. Int. 27, 3905–3917 (2021). https://doi.org/10.1007/s12540-020-00877-5

    Article  CAS  Google Scholar 

  49. S.F. Mousavi, H. Sharifi, M. Tayebi, B. Hamawandi, Y. Behnamian, Thermal cycles behavior and microstructure of AZ31/SiC composite prepared by stir casting. Sci. Rep. 12, 15191 (2022). https://doi.org/10.1038/s41598-022-19410-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. S.V.A. Ana, M. Reihanian, B. Lotfi, Accumulative roll bonding (ARB) of the composite coated strips to fabricate multi-component Al-based metal matrix composites. Mater. Sci. Eng. A 647, 303–312 (2015). https://doi.org/10.1016/j.msea.2015.09.006

    Article  CAS  Google Scholar 

  51. Y.-Y. Wang, C. Jia, M. Xu, M. Kaseem, M. Tayebi, Microstructural changes caused by the creep test in ZK60 alloy reinforced by SiCp at intermediate temperature after KOBO extrusion and aging. Materials (Basel) 16, 3885 (2023). https://doi.org/10.3390/ma16103885

    Article  CAS  PubMed  Google Scholar 

  52. M. Naseri, M. Reihanian, E. Borhani, Effect of strain path on microstructure, deformation texture and mechanical properties of nano/ultrafine grained AA1050 processed by accumulative roll bonding (ARB). Mater. Sci. Eng. A 673, 288–298 (2016). https://doi.org/10.1016/j.msea.2016.07.031

    Article  CAS  Google Scholar 

  53. I. Barsoum, J. Faleskog, Rupture mechanisms in combined tension and shear—experiments. Int. J. Solids Struct. 44, 1768–1786 (2007). https://doi.org/10.1016/j.ijsolstr.2006.09.031

    Article  CAS  Google Scholar 

  54. S.K. Moheimani, K. Azadeh, S. Khademzadeh, M. Tayebi, A. Rajaee, A. Saboori, Tribological behaviour of AZ31 magnesium alloy reinforced by bimodal size B4C after precipitation hardening. J. Magnes. Alloys 10, 3267–3280 (2022). https://doi.org/10.1016/j.jma.2021.05.016

    Article  CAS  Google Scholar 

  55. M. Li, Q. Guo, L. Chen, L. Li, H. Hou, Y. Zhao, Microstructure and properties of graphene nanoplatelets reinforced AZ91D matrix composites prepared by electromagnetic stirring casting. J. Mater. Res. Technol. 21, 4138–4150 (2022). https://doi.org/10.1016/j.jmrt.2022.11.033

    Article  CAS  Google Scholar 

  56. S. Wen, P. Huang, Principles of Tribology (Wiley, Hoboken, 2012)

    Google Scholar 

  57. L. Chen, Y. Zhao, J. Jing, H. Hou, Microstructural evolution in graphene nanoplatelets reinforced magnesium matrix composites fabricated through thixomolding process. J. Alloys Compd. 940, 168824 (2023). https://doi.org/10.1016/j.jallcom.2023.168824

    Article  CAS  Google Scholar 

  58. X. Wang, M. Huang, Y. Zheng, J. Yang, P. Chi, M. Tayebi, Hot temperature tribological behavior of Mg–Zn–Gd alloy under graphite surfactant functionalized SN500. J. Alloys Compd. 967, 171843 (2023). https://doi.org/10.1016/j.jallcom.2023.171843

    Article  CAS  Google Scholar 

  59. M. Karimi, M. Bozorg, Wear behavior of laminated nanostructured CP–Ti sheets fabricated by severe plastic deformation. Mater. Chem. Phys. 290, 126634 (2022). https://doi.org/10.1016/j.matchemphys.2022.126634

    Article  CAS  Google Scholar 

  60. E. Ahmadi, M. Goodarzi, Mechanical response and wear behavior of graphene reinforced inconel 718 composite produced via hybrid accumulative roll bonding and gas tungsten arc welding process. J. Mater. Res. Technol. 19, 3059–3072 (2022). https://doi.org/10.1016/j.jmrt.2022.06.013

    Article  CAS  Google Scholar 

  61. N. Bay, Cold welding: Part 1. characteristics, bonding mechanisms, bond strength, in Metal Construction, vol. 18 (Welding Institute Journal, Cambridge, 1986)

  62. M. Eizadjou, H.D. Manesh, K. Janghorban, Microstructure and mechanical properties of ultra-fine grains (UFGs) aluminum strips produced by ARB process. J. Alloys Compd. 474, 406–415 (2009). https://doi.org/10.1016/j.jallcom.2008.06.161

    Article  CAS  Google Scholar 

  63. A.A. Javidparvar, R. Naderi, B. Ramezanzadeh, L-cysteine reduced/functionalized graphene oxide application as a smart/control release nanocarrier of sustainable cerium ions for epoxy coating anti-corrosion properties improvement. J. Hazard. Mater. 389, 122135 (2020). https://doi.org/10.1016/j.jhazmat.2020.122135

    Article  CAS  PubMed  Google Scholar 

  64. Z. Gao, D. Zhang, S. Jiang, Q. Zhang, X. Li, XPS investigations on the corrosion mechanism of V(IV) conversion coatings on hot-dip galvanized steel. Corros Sci 139, 163–171 (2018). https://doi.org/10.1016/j.corsci.2018.04.030

    Article  CAS  Google Scholar 

  65. X.-J. Zhang, F. Gao, Z.-Y. Liu, Effect of Sn on corrosion behavior of ultra-pure 17 mass% cr ferritic stainless steels in sulphuric acid. J. Iron Steel Res. Int. 23, 1044–1053 (2016). https://doi.org/10.1016/S1006-706X(16)30156-X

    Article  Google Scholar 

  66. Y. Hao, Y. Zhao, B. Li, L. Song, Z. Guo, Self-healing effect of graphene@PANI loaded with benzotriazole for carbon steel. Corros. Sci. 163, 108246 (2020). https://doi.org/10.1016/j.corsci.2019.108246

    Article  CAS  Google Scholar 

  67. S. Feliu, Electrochemical impedance spectroscopy for the measurement of the corrosion rate of magnesium alloys: brief review and challenges. Metals (Basel) 10, 775 (2020). https://doi.org/10.3390/met10060775

    Article  CAS  Google Scholar 

  68. M. Furko, Y. Jiang, T.A. Wilkins, C. Balázsi, Electrochemical and morphological investigation of silver and zinc modified calcium phosphate bioceramic coatings on metallic implant materials. Mater. Sci. Eng. C 62, 249–259 (2016). https://doi.org/10.1016/j.msec.2016.01.060

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laleh Ghalandari.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeil Zadeh, M., Ghalandari, L., Sani, R. et al. Microstructural Evaluation, Mechanical Properties, and Corrosion Behavior of the Al/Cu/Brass Multilayered Composite Produced by the ARB Process. Met. Mater. Int. 30, 1123–1144 (2024). https://doi.org/10.1007/s12540-023-01557-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01557-w

Keywords

Navigation