Skip to main content
Log in

Mechanical Properties of (Ce + Yb) Modified in situ TiB2/Al-Si Matrix Composites Enhanced via Thermal Deformation Combined with Heat Treatment

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In the current work, the microstructure evolution and mechanical properties of (Ce + Yb) modified in situ TiB2/Al-Si matrix composite were systematically investigated by thermal deformation at strain rates of 0.0005–0.0125 s− 1 and temperatures of 250–450 °C. The enhanced strength and plasticity of the composite have a good correlation with the microstructure evolution under different thermal deformation parameters. The obtained results indicated that under the hot deformation parameters of strain rate of 0.0025 s− 1 and deformation temperature of 250 °C, the defects of micropores can be reduced or even eliminated and improved the density of the composite. The coarse α-Al grains, eutectic Si and Fe-rich phases and undissolved primary (Ce + Yb)-containing intermetallics were significantly refined under high shear stress. At the same time, the distribution of in-situ synthesized submicron TiB2 particles in the Al matrix tends to be more uniform. The substructures such as high density dislocations and low angle grain boundaries were introduced under the thermal deformation of 250 °C/0.0025 s− 1, which provided the necessary conditions for the formation of recrystallized grains that are less likely to overgrow and further promoted the aging precipitation of nano-strengthening precipitates. Finally, the UTS, YS and elongation of the composite reached the maximum values of 385 MPa, 316 MPa and 9.6% respectively, which were 60.4%, 85.9% and 45.5% higher than the as-cast and undeformed composite.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. O. Gursoy, G. Timelli, J. Mater. Res. Technol. 9, 8652 (2020). https://doi.org/10.1016/j.jmrt.2020.05.105

    Article  CAS  Google Scholar 

  2. B. Li, H. Wang, J. Jie, Z. Wei, Mater. Des. 32, 1617 (2011). https://doi.org/10.1016/j.matdes.2010.08.040

    Article  CAS  Google Scholar 

  3. M.G. Mahmoud, Y. Zedan, V. Songmene, A.M. Samuel, F.H. Samuel, Int. J. Metalcast. 16, 535 (2022). https://doi.org/10.1007/s40962-021-00640-5

    Article  CAS  Google Scholar 

  4. Z. Hu, H. Yan, Y.S. Rao, Trans. Nonferrous Metal. Soc 23, 3228 (2013). https://doi.org/10.1016/S1003-6326(13)62857-5

    Article  CAS  Google Scholar 

  5. Q. Li, Y. Zhu, S. Zhao, Y. Lan, D. Liu, G. Jian, Q. Zhang, H. Zhou, Intermetallics 120, 106768 (2020). https://doi.org/10.1016/j.intermet.2020.106768

  6. Q. Zheng, L. Zhang, H. Jiang, J. Zhao, J. He, J. Mater. Sci. Technol. 47, 142 (2020). https://doi.org/10.1016/j.jmst.2019.12.021

    Article  CAS  Google Scholar 

  7. Y. Yang, S.Y. Zhong, Z. Chen, M. Wang, N. Ma, H. Wang, J. Alloy. Compd. 647, 63 (2015). https://doi.org/10.1016/j.jallcom.2015.05.167

    Article  CAS  Google Scholar 

  8. X. Li, C. Xia, Y. Wu, D. Chen, M. Wang, N. Ma, H. Wang, Mater. Sci-Medzg 25, 376 (2019). https://doi.org/10.5755/j01.ms.25.4.19453

    Article  Google Scholar 

  9. F. Mao, G. Yan, Z. Xuan, Z. Cao, T. Wang, J. Alloy. Compd. 650, 896 (2015). https://doi.org/10.1016/j.jallcom.2015.06.266

    Article  CAS  Google Scholar 

  10. S.C. Zhang, J.F. Leng, C.X. Li, X.Y. Teng, Mater. Sci. Forum 898, 259 (2017). https://doi.org/10.4028/www.scientific.net/MSF.898.259

    Article  Google Scholar 

  11. G. Niu, J. Mao, J. Wang, Metall. Mater. Trans. A 50, 5935 (2019). https://doi.org/10.1007/s11661-019-05458-9

    Article  CAS  Google Scholar 

  12. X. Song, H. Yan, X. Zhang, J. Rare Earth. 35, 412 (2017). https://doi.org/10.1016/S1002-0721(17)60927-x

    Article  CAS  Google Scholar 

  13. Y. Zou, H. Yan, Z. Hu, Q. Ran, Mater. Res. Express 7, 026526 (2020). https://doi.org/10.1088/2053-1591/ab6fa7

  14. X. Song, H. Yan, Q. Wu, Z. Hu, Int. J. Cast. Metal Res. 32, 59 (2019). https://doi.org/10.1080/13640461.2018.1518744

    Article  CAS  Google Scholar 

  15. Y. Rao, H. Yan, Z. Hu, M. Fang, L. Zhang, Int. J. Metalcast. 16, 2210 (2022). https://doi.org/10.1007/s40962-021-00735-z

    Article  CAS  Google Scholar 

  16. M. Qiu, S. Wang, X. Lei, P. Zhuang, X. Du, Int. J. Metalcast. 16, 1206 (2022). https://doi.org/10.1007/s40962-021-00673-w

    Article  CAS  Google Scholar 

  17. S.L. Pramod, A.K.P. Ravikirana, B.S. Rao, S.R. Murty, Bakshi, Mater. Sci. Eng. A 739, 383 (2019). https://doi.org/10.1016/j.jallcom.2017.10.021

    Article  CAS  Google Scholar 

  18. R. Tao, Y. Zhao, X. Kai, Y. Wang, W. Qian, Y. Yang, M. Wang, W. Xu, J. Alloy. Compd. 731, 200 (2018). https://doi.org/10.1016/j.jallcom.2017.10.021

    Article  CAS  Google Scholar 

  19. W. Qian, Y. Zhao, X. Kai, Y. Yan, R. Tao, X. Gao, J. Alloy. Compd. 813, 152198 (2020).https://doi.org/10.1016/j.jallcom.2019.152198

  20. M. Qiu, H. Liu, Z. Zhang, W. Hu, X. Du, Int. J. Metalcast. (2022). https://doi.org/10.1007/s40962-022-00898-3

    Article  Google Scholar 

  21. M. Qiu, X. Du, Z. Zhang, C. Chen, X. Lei, J. Mater. Eng. Perform. (2022). https://doi.org/10.1007/s11665-022-07334-x

    Article  Google Scholar 

  22. Z. Wei, Y. Lei, H. Yan, X. Xu, J. He, J. Rare Earth. 37, 659 (2019). https://doi.org/10.1016/j.jre.2018.11.008

    Article  CAS  Google Scholar 

  23. X. Kai, Y. Zhao, A. Wang, C. Wang, Z. Mao, Compos. Sci. Technol. 116, 1 (2015). https://doi.org/10.1016/j.compscitech.2015.05.006

    Article  CAS  Google Scholar 

  24. H. Ghandvar, M.H. Idris, N. Ahmad, J. Alloy. Compd. 751, 370 (2018). https://doi.org/10.1016/j.jallcom.2018.04.131

    Article  CAS  Google Scholar 

  25. Y.S. Lee, J.K. Jung, S.B. Kim, S.H. Kim, C.Y. Lim, H.W. Kim, W.K. Kim, S.K. Hyun, Mater. Charact. 178, 111256 (2021). https://doi.org/10.1016/j.matchar.2021.111256

    Article  CAS  Google Scholar 

  26. D. Ke, L. Hengcheng, J. Qiumin, T. Yun, Mater. Sci. Eng. A 527, 6887 (2010). https://doi.org/10.1016/j.msea.2010.07.068

    Article  CAS  Google Scholar 

  27. P. Jin, B. Xiao, Q. Wang, Z. Ma, Y. Liu, S. Li, J. Mater. Sci. Technol. 27, 518 (2011). https://doi.org/10.1016/S1005-0302(11)60101-1

    Article  CAS  Google Scholar 

  28. Z. Wang, Q. Zhang, L. Fu, P. Shao, Y. Zhou, P. Zhu, H. Su, G. Wu, J. Alloy. Compd.927, 167118 (2022).https://doi.org/10.1016/j.jallcom.2022.167118

  29. X. Xu, W. Zhu, X. Guo, C. Liang, Y. Deng, J. Alloy. Compd. 935, 167892 (2023). https://doi.org/10.1016/j.jallcom.2022.167892

    Article  CAS  Google Scholar 

  30. K. Yoshida, T. Ishizaka, M. Kuroda, S. Ikawa, Acta Mater. 55, 4499 (2007). https://doi.org/10.1016/j.actamat.2007.04.014

    Article  CAS  Google Scholar 

  31. W. Wu, Z. Liu, Y. Hu, F. Li, S. Bai, P. Xia, A. Wang, C. Ye, J. Alloy. Compd. 730, 318 (2018). https://doi.org/10.1016/j.jallcom.2017.09.320

    Article  CAS  Google Scholar 

  32. S. de La Chapelle, Scripta Mater. 45, 1387 (2001). https://doi.org/10.1016/S1359-6462(01)01174-5

    Article  Google Scholar 

  33. Z. Hu, X. Li, J. Xi, L. Da, J. Alloy. Compd. 911, 165055 (2022). https://doi.org/10.1016/j.jallcom.2022.165055

    Article  Google Scholar 

  34. A. Kazemi-Navaee, R. Jamaati, H.J. Aval, Mater. Sci. Eng. A 824, 141801 (2021). https://doi.org/10.1016/j.msea.2021.141801

  35. Y. Wang, Y. Li, W. Yu, H. Tang, H. Wang, G. Xu, Z. Wang, J. Alloy. Compd. 935, 168072 (2023). https://doi.org/10.1016/j.jallcom.2022.168072

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Science and Technology Agency of Anhui Province (202104a05020047 and 2022a05020032), the Industrial Guiding Fund of Changfeng County and Hefei University of Technology (JZ2019QTXM0281), the Intelligent Manufacturing Institute of HFUT (IMICZ2019003) and the Fundamental Research Funds for the Central Universities (PA2020GDGP0054).

Author information

Authors and Affiliations

Authors

Contributions

MQ: Conceptualization, data curation, methodology, validation, writing–original draft, preparation. WH: Methodology, validation. HL: Software, visualization. YP: Investigation, formal analysis. XD: Writing–review and editing, funding acquisition, project administration, resources, supervision.

Corresponding author

Correspondence to Xiaodong Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, M., Hu, W., Liu, H. et al. Mechanical Properties of (Ce + Yb) Modified in situ TiB2/Al-Si Matrix Composites Enhanced via Thermal Deformation Combined with Heat Treatment. Met. Mater. Int. 29, 3078–3092 (2023). https://doi.org/10.1007/s12540-023-01425-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01425-7

Keywords

Navigation