Skip to main content
Log in

Investigation on Mechanical and Wear Performance of Ultrasonic-Assisted Stir Cast AZ91D/Al2O3 Magnesium Matrix Composites

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The current investigation is focused on the fabrication and characterization of Al2O3 reinforced AZ91 Magnesium (Mg) matrix composites. These lightweight and wear-resistant composites were developed by incorporating the varying Al2O3 reinforcement in weight percentages (wt% ages) into AZ91 Mg matrix alloy using stir casting technique in conjunction with ultrasonic agitations with optimal conditions. The effects of varying wt% of reinforcements on the composite’s particle distribution, matrix-particle interfacial reaction, microstructure, mechanical and tribological attributes were investigated. The tribological performance of base matrix alloy and the developed composites was examined using a friction and wear apparatus. The analysis using SEM, OM, and XRD were accomplished to investigate the surface morphology, microstructure, and phase changes of base matrix alloy and the developed composites. The mechanical characterization shows that the insertion of Al2O3 particulates prompted the simultaneous enhancement in microhardness, impact strength, and indentation fracture toughness. The homogeneous dispersion of fine particles caused by the ultrasonic agitations was credited with improving wear resistance. The wear tracks were formed on the worn specimen by adhesion, oxidation, erosion of soft AZ91 magnesium matrix, and the delamination when assessing sliding wear, as revealed by the micro-structural investigation. The eruption of base matrix and the pull-out of the particles have both contributed to the material removal. The addition of reinforcement above a certain limit led to the agglomeration, clustering, and uneven distribution of particles, which resulted in the deterioration in impact toughness and the wear-resistance of the composite.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. B.L. Mordike, T. Ebert, Magnesium properties—applications—potential. Mater. Sci. Eng. A 302, 37–45 (2001). https://doi.org/10.1016/S0921-5093(00)01351-4

    Article  Google Scholar 

  2. A.A. Luo, Magnesium casting technology for structural applications. J. Magnes. Alloy. 1, 2–22 (2013). https://doi.org/10.1016/j.jma.2013.02.002

    Article  CAS  Google Scholar 

  3. S. Sakthivelu, P.P. Sethusundaram, M. Meignanamoorthy, M. Ravichandran, Synthesis of metal matrix composites through stir casting process-a review. Mech. Mech. Eng. 22, 357–369 (2018). 

    Article  Google Scholar 

  4. W.H. Sillekens, S.R. Agnew, N.R. Neelameggham, S.N. Mathaudhu (ed.), Magnesium Technology 2011 (John Wiley & Sons, Hoboken, 2011)

  5. F. Wang, D. Eskin, J. Mi, T. Connolley, J. Lindsay, M. Mounib, A refining mechanism of primary Al3Ti intermetallic particles by ultrasonic treatment in the liquid state. Acta Mater. 116, 354–363 (2016). https://doi.org/10.1016/j.actamat.2016.06.056

    Article  Google Scholar 

  6. S.D. Kumar, M. Ravichandran, M. Meignanamoorthy, S. Sakthivelu, S.V. Alagarsamy, C. Chanakyan, Investigations on properties of Mg-Al2O3 composites fabricated via stir casting route. Mater. Today Proc. 27, 1132–1136 (2020). https://doi.org/10.1016/j.matpr.2020.01.586

    Article  CAS  Google Scholar 

  7. S.F. Hassan, M. Gupta, Effect of particulate size of Al2O3 reinforcement on microstructure and mechanical behavior of solidification processed elemental Mg. J. Alloys Compd. 419, 84–90 (2006). https://doi.org/10.1016/j.jallcom.2005.10.005

    Article  CAS  Google Scholar 

  8. R. Rahmany-Gorji, A. Alizadeh, H. Jafari, Microstructure and mechanical properties of stir cast ZX51/Al2O3p magnesium matrix composites. Mater. Sci. Eng. A 674, 413–418 (2016). https://doi.org/10.1016/j.msea.2016.07.057

    Article  Google Scholar 

  9. P. Samal, B. Surekha, P.R. Vundavilli, Experimental investigations on microstructure, mechanical behavior and tribological analysis of AA5154/SiC Composites by Stir Casting. Silicon 14, 3317–3328 (2022). https://doi.org/10.1007/s12633-021-01115-2

    Article  CAS  Google Scholar 

  10. D. Sameer Kumar, K.N.S. Suman, C. Tara Sasanka, K. Ravindra, P. Poddar, S.B. Venkata Siva, Microstructure, mechanical response and fractography of AZ91E/Al2O3 (p) nano composite fabricated by semi solid stir casting method. J. Magnes. Alloy. 5, 48–55 (2017). https://doi.org/10.1016/j.jma.2016.11.006

    Article  CAS  Google Scholar 

  11. S.S. Wu, D. Yuan, S. Lin. Lü, K. Hu, P. An, Nano-SiCP particles distribution and mechanical properties of Al-matrix composites prepared by stir casting and ultrasonic treatment. China Foundry 15, 203–209 (2018). https://doi.org/10.1007/s41230-018-8009-2

    Article  Google Scholar 

  12. A.S. Verma, M.S. Cheema, S. Kant, N.M. Suri, Porosity study of developed Al–Mg–Si/bauxite residue metal matrix composite using advanced stir casting process. Arab. J. Sci. Eng. 44, 1543–1552 (2019). https://doi.org/10.1007/s13369-018-3613-4

    Article  CAS  Google Scholar 

  13. P.K. Ghosh, S. Ray, Effect of porosity and alumina content on the high temperature mechanical properties of compocast aluminium alloy-alumina particulate composite. J. Mater. Sci. 22, 4077–4086 (1987). https://doi.org/10.1007/BF01133361

    Article  CAS  Google Scholar 

  14. T. Tokarski, Effect of rapid solidification on the structure and mechanical properties of AZ91 magnesium alloy. Solid State Phenom. 186, 120–123 (2012). https://doi.org/10.4028/www.scientific.net/SSP.186.120

    Article  CAS  Google Scholar 

  15. Q.B. Nguyen, M. Gupta, Increasing significantly the failure strain and work of fracture of solidification processed AZ31B using nano-Al2O3 particulates. J. Alloys Compd. 459, 244–250 (2008). https://doi.org/10.1016/j.jallcom.2007.05.038

    Article  CAS  Google Scholar 

  16. D. Kumar, L. Thakur, Recent studies on the fabrication of magnesium based metal matrix nano-composites by using ultrasonic stir casting technique–a review. Mater. Sci. Forum 969, 889–894 (2019). https://doi.org/10.4028/www.scientific.net/MSF.969.889

  17. P.P. Bhingole, G.P. Chaudhari, S.K. Nath, Processing, microstructure and properties of ultrasonically processed in situ MgO–Al2O3–MgAl2O4 dispersed magnesium alloy composites. Compos. Part A Appl. Sci. Manuf. 66, 209–217 (2014). https://doi.org/10.1016/j.compositesa.2014.08.001

    Article  CAS  Google Scholar 

  18. D. Kumar, L. Thakur, A study of processing and parametric optimization of wear-resistant AZ91–TiB2 composite fabricated by ultrasonic-assisted stir casting process. Surf. Topogr. Metrol. Prop. 10, 025024 (2022). https://doi.org/10.1088/2051-672x/ac7065

    Article  Google Scholar 

  19. P. Mohan, A. Manna, Fabrication and processing of bioabsorbable hybrid Zn/(Ag+Fe+Mg)-MMC on Developed Ultrasonic Vibration-Assisted Argon Atmosphere Stir Casting Set-up. Arab. J. Sci. Eng. 47, 8361–8372 (2022). https://doi.org/10.1007/s13369-021-06205-2

    Article  CAS  Google Scholar 

  20. K.B. Nie, X.J. Wang, K. Wu, X.S. Hu, M.Y. Zheng, Development of SiCp/AZ91 magnesium matrix nanocomposites using ultrasonic vibration. Mater. Sci. Eng. A 540, 123–129 (2012). https://doi.org/10.1016/j.msea.2012.01.112

    Article  CAS  Google Scholar 

  21. M. Bľanda, J. Balko, A.N. Duszova, P. Hvizdos, J. Dusza, H. Reveron, Hardness and indentation fracture toughness of alumina-silicon carbide nanocomposites. Acta Metall. Slovaca Conf. 3, 270–275 (2013). https://doi.org/10.12776/amsc.v3.139

  22. H.M. Abed Zaid, A.R.N. Abed, H.S. Hasan, Improvement of Mechanical Properties of Magnesium (Mg) Matrix Composites Reinforced with Nano Alumina (Al2O3) Particles. IOP Conf. Ser. Mater. Sci. Eng. 671, 012162 (2020). https://doi.org/10.1088/1757-899X/671/1/012162

  23. J. Nafar Dastgerdi, G. Marquis, S. Sankaranarayanan, M. Gupta, Fatigue crack growth behavior of amorphous particulate reinforced composites. Compos. Struct. 153, 782–790 (2016). https://doi.org/10.1016/j.compstruct.2016.06.071

    Article  Google Scholar 

  24. M. Habibnejad-Korayem, R. Mahmudi, W.J. Poole, Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles. Mater. Sci. Eng. A 519, 198–203 (2009). https://doi.org/10.1016/j.msea.2009.05.001

    Article  CAS  Google Scholar 

  25. P.K. Rohatgi, P. Ajay Kumar, N.M. Chelliah, T.P.D. Rajan, Solidification processing of cast metal matrix composites over the last 50 years and opportunities for the future. JOM 72, 2912–2926 (2020). https://doi.org/10.1007/s11837-020-04253-x

    Article  CAS  Google Scholar 

  26. S.-J. Huang, A.N. Ali, Effects of heat treatment on the microstructure and microplastic deformation behavior of SiC particles reinforced AZ61 magnesium metal matrix composite. Mater. Sci. Eng. A 711, 670–682 (2018). https://doi.org/10.1016/j.msea.2017.11.020

    Article  CAS  Google Scholar 

  27. M. Esmaily, N. Mortazavi, J.E. Svensson, M. Halvarsson, M. Wessén, L.G. Johansson, A.E.W. Jarfors, A new semi-solid casting technique for fabricating SiC-reinforced Mg alloyzs matrix composites. Compos. Part B Eng. 94, 176–189 (2016). https://doi.org/10.1016/j.compositesb.2016.02.019

    Article  CAS  Google Scholar 

  28. S.V. Muley, S.P. Singh, P. Sinha, P.P. Bhingole, G.P. Chaudhari, Microstructural evolution in ultrasonically processed in situ AZ91 matrix composites and their mechanical and wear behavior. Mater. Des. 53, 475–481 (2014). https://doi.org/10.1016/j.matdes.2013.07.056

    Article  CAS  Google Scholar 

  29. Z. Liu, Q. Han, J. Li, Ultrasound assisted in situ technique for the synthesis of particulate reinforced aluminum matrix composites. Compos. Part B Eng. 42, 2080–2084 (2011). https://doi.org/10.1016/j.compositesb.2011.04.004

    Article  Google Scholar 

  30. F. Czerwinski, The oxidation behaviour of an AZ91D magnesium alloy at high temperatures. Acta Mater. 50, 2639–2654 (2002). https://doi.org/10.1016/S1359-6454(02)00094-0

    Article  CAS  Google Scholar 

  31. M.C. Gui, J.M. Han, P.Y. Li, J.M. Han, P.Y.L. Microstructure, M.C. Gui, J.M. Han, P.Y. Li, Microstructure and mechanical properties of Mg–Al9Zn/SiC p composite produced by vacuum stir casting process Microstructure and mechanical properties of Mg–Al9Zn/SiC p composite produced by vacuum stir casting process. Mater. Sci. Technol. 20, 765–771 (2004). https://doi.org/10.1179/026708304225017319

    Article  CAS  Google Scholar 

  32. S. Mozammil, J. Karloopia, R. Verma, P.K. Jha, Effect of varying TiB2 reinforcement and its ageing behaviour on tensile and hardness properties of in-situ Al-4.5%Cu-xTiB2 composite. J. Alloys Compd. 793, 454–466 (2019). https://doi.org/10.1016/j.jallcom.2019.04.137

    Article  CAS  Google Scholar 

  33. H. Dieringa, L. Katsarou, R. Buzolin, G. Szakács, M. Horstmann, M. Wolff, C. Mendis, S. Vorozhtsov, D. StJohn, Ultrasound assisted casting of an AM60 based metal matrix nanocomposite, its properties, and recyclability. Metals 7, 388 (2017). https://doi.org/10.3390/met7100388

    Article  Google Scholar 

  34. Z. Shao, Q. Le, Z. Zhang, J. Cui, A new method of semi-continuous casting of AZ80 Mg alloy billets by a combination of electromagnetic and ultrasonic fields. Mater. Des. 32, 4216–4224 (2011). https://doi.org/10.1016/j.matdes.2011.04.035

    Article  CAS  Google Scholar 

  35. G. Prashar, H. Vasudev, Structure-property correlation of plasma-sprayed inconel625-Al2O3 bimodal composite coatings for high-temperature oxidation protection. J. Therm. Spray Technol. 31, 2385–2408 (2022). https://doi.org/10.1007/s11666-022-01466-1

    Article  CAS  Google Scholar 

  36. K. Rahmani, G.H. Majzoobi, G. Ebrahim-Zadeh, M. Kashfi, Comprehensive study on quasi-static and dynamic mechanical properties and wear behavior of Mg—B4C composite compacted at several loading rates through powder metallurgy. Trans. Nonferrous Met. Soc. China 31, 371–381 (2021). https://doi.org/10.1016/S1003-6326(21)65502-4

    Article  CAS  Google Scholar 

  37. M. Rashad, F. Pan, M. Asif, J. She, A. Ullah, Improved mechanical proprieties of magnesium based composites with titanium-aluminum hybrids. J. Magnes. Alloy. 3, 1–9 (2015). https://doi.org/10.1016/j.jma.2014.12.010

    Article  CAS  Google Scholar 

  38. S.F. Hassan, M. Gupta, Effect of type of primary processing on the microstructure, CTE and mechanical properties of magnesium/alumina nanocomposites. Compos. Struct. 72, 19–26 (2006). https://doi.org/10.1016/j.compstruct.2004.10.008

    Article  Google Scholar 

Download references

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalit Thakur.

Ethics declarations

Conflict of interests

The authors have no competing interests to declare that are relevant to the content of this article. The authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Thakur, L. Investigation on Mechanical and Wear Performance of Ultrasonic-Assisted Stir Cast AZ91D/Al2O3 Magnesium Matrix Composites. Met. Mater. Int. 29, 2767–2781 (2023). https://doi.org/10.1007/s12540-023-01395-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01395-w

Keywords

Navigation