Skip to main content
Log in

Response Mechanism of Mechanical Behavior with Mg Plate Microstructure Evolution During Al/Mg/Al Composite Plate Rolled by hard Plate

  • Published:
Metals and Materials International Aims and scope Submit manuscript

A Correction to this article was published on 27 February 2023

This article has been updated

Abstract

The long manufacturing process, difficult coordinated regulation of structural properties and interface bonding ability are some of the difficulties that restrict the rapid development of lightweight composite plate forming and manufacturing for a long time. In order to solve the above problems, this paper proposes adding hard plate to roll Al/Mg/Al composite plates. The thickness of Mg/Al is 10:1, and the hard-plate rolling process experiments were carried out by designing five groups of different temperatures. The influence of magnesium plate microstructure evolution on the interface bonding ability and mechanical behavior of composite plates is mainly studied. Under the same conditions, the matrix microstructure changes greatly from 200 to 350 °C. At 350 °C, the microstructure of Mg plate in ND is uniform without shear bands and twins. Its recrystallization ratio is 31.77%, which played a role in weakening the texture and reducing its anisotropy. Interestingly, in the process of three-point bending, the non-basal plane slip and the basal plane slip start simultaneously, the maximum bending strength of the composite plate reaches 504 MPa, and the interface was well bonded without obvious bending fatigue phenomenon. The tear test showed that the tear load reaches 0.42 kN, and the elastic elongation stage of Al is longer than the tear propagation stage, and the interface bonding was uniform. The hard plate rolling process provides scientific guidance for the forming and preparation of composite plates.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. Z. Yan, Z. Zhang, X. Li, J. Xu, Q. Wang, G. Zhang, J. Zheng, H. Fan, K. Xu, J. Zhu, Y. Xue, J. Alloy. Compd. 822, 153698 (2020)

    Article  CAS  Google Scholar 

  2. P. Wankhede, K. Suresh, Adv. Mater. Process. Technol. 6, 458 (2020)

    Google Scholar 

  3. A. Ramesh, S. Sathian, V. Satheeshkumar, Mater. Today Proc. 5, 25255 (2018)

    CAS  Google Scholar 

  4. K. Hassan, A.S. Kang, C. Prakash, G. Singh, Mater. Today Proc. 50, 1043 (2022)

    Google Scholar 

  5. Y. He, H. Xu, M. Hu, B. Jiang, Z. Ji, J. Mater. Sci. Technol. 53, 82 (2020)

    Article  CAS  Google Scholar 

  6. Y. Wang, S. Zhang, R. Wu, N. Turakhodjaev, L. Hou, J. Zhang, S. Betsofen, J. Mater. Sci. Technol. 61, 197 (2021)

    Article  CAS  Google Scholar 

  7. J. Wang, L. Xu, R. Wu, J. Feng, J. Zhang, L. Hou, M. Zhang , Acta Metall. Sin.-Engl. 33, 490 (2020)

    Article  CAS  Google Scholar 

  8. J. Tang, L. Chen, G. Zhao, C. Zhang, J. Yu, J. Alloy. Compd. 784, 727 (2019)

    Article  Google Scholar 

  9. G. Chen, X. Chang, J. Zhang, Y. Jin, C. Sun, Q. Chen, Z. Zhao, Met. Mater. Int. 26, 1574 (2020)

    Article  CAS  Google Scholar 

  10. X. Bi, Y. Hu, R. Li, H. Zhao, T. Li, J. Alloy. Compd. 900, 163417 (2022)

    Article  Google Scholar 

  11. W.-W Yang, X.-Q Cao, L.-F Wang, Z.-Q. Chen, W.-X. Wang, D.-Y. Wang, Mat. Res. 21, e20180350 (2018)

    Google Scholar 

  12. Y. Yu, P. Yan, T. Chai, B. Yan, Int. J. Mod. Phys. B 36, 2240056 (2022)

    Article  Google Scholar 

  13. H.Y. Sun, D.H. Zhang, M. Ma, J.X. Zhang, W.C. Liu, J. Mater. Eng. Perform. 31, 7624 (2022)

    Google Scholar 

  14. X.P. Zhang, T.H. Yang, S. Castagne, J.T. Wang, Mater. Sci. Eng. A 528, 1954 (2011)

    Article  Google Scholar 

  15. K. Wu, H. Chang, E. Maawad, W.M. Gan, H.G. Brokmeier, M.Y. Zheng, Mater. Sci. Eng. A 527, 3073 (2010)

    Article  Google Scholar 

  16. C.Z. Luo, W. Liang, X.R. Li, Y.J. Yao, Mater. Sci. Forum 747-748, 346 (2013)

    Article  Google Scholar 

  17. K.S. Lee, D.H. Yoon, H.K. Kim, Y.-N. Kwon, Y.-S. Lee, Mater. Sci. Eng. A 556, 319 (2012)

    Google Scholar 

  18. X.P. Zhang, T.H. Yang, S. Castagne, J.T. Wang, Mater. Sci. Eng. A 528, 1954 (2011)

    Article  Google Scholar 

  19. P.D. Huo, F. Li, Y. Wang, X.M. Xiao, Int. J. Adv. Manuf. Tech. 118, 55 (2022)

    Article  Google Scholar 

  20. L. Chen, J. Tang, G. Zhao, C. Zhang, X. Chu, J. Mater. Process. Tech. 258, 165 (2018)

    CAS  Google Scholar 

  21. P.D. Huo, F. Li, Y. Wang, R.Z. Wu, R.H. Gao, A.X. Zhang, Mater. Design 219, 110696 (2022)

    Article  CAS  Google Scholar 

  22. Z. Zhang, J. Zhang, J. Wang, Z. Li, J. Xie, S. Liu, K. Guan, R. Wu, Int. J. Miner. Metall. Mater. 281, 30 (2021)

    Article  Google Scholar 

  23. J. Rong, P.-Y. Wang, M. Zha, C. Wang, X.-Y. Xu, H.-Y. Wang, Q.-C. Jiang, J. Alloy. Compd. 738, 246 (2018)

    Article  Google Scholar 

  24. N. Wang, X. Chen, A. Li, Y. Li, H. Zhang, Y. Liu, T. Nonferr. Metal. Soc. 26, 359 (2016)

    Article  CAS  Google Scholar 

  25. Y. Wang, F. Li, Y. Wang, Y. Wang, X.M. Xiao, J. Magnes. Alloy. (2021). https://doi.org/10.1016/j.jma.2021.05.007

    Article  Google Scholar 

  26. Y. Wang, F. Li, N. Bian, H.Q. Du, P.D. Huo, J. Magnes. Alloy. (2021). https://doi.org/10.1016/j.jma.2021.08.035

  27. H. Ding, X. Shi, Y. Wang, G. Cheng, S. Kamado, Mater. Sci. Eng. A 645, 196 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper was supported by the Natural Science Foundation of Heilongjiang Province (No. JQ2022E004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Li.

Ethics declarations

Conflict of interest

The authors indicate that they have no financial relationship with the organization that sponsored the research. And the authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

In the original version of this article, the given and family names of Rong He Gao were incorrectly structured. The correct name has been updated.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, R.H., Li, F., Niu, W.T. et al. Response Mechanism of Mechanical Behavior with Mg Plate Microstructure Evolution During Al/Mg/Al Composite Plate Rolled by hard Plate. Met. Mater. Int. 29, 2004–2016 (2023). https://doi.org/10.1007/s12540-022-01348-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01348-9

Keywords

Navigation