Skip to main content
Log in

Prediction of hole expansion ratio for various steel sheets based on uniaxial tensile properties

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Stretch-flangeability is one of important formability parameters of thin steel sheets used in the automotive industry. There have been many attempts to predict hole expansion ratio (HER), a typical term to evaluate stretch-flangeability, using uniaxial tensile properties for convenience. This paper suggests a new approach that uses total elongation and average normal anisotropy to predict HER of thin steel sheets. The method provides a good linear relationship between HER of the machined hole and the predictive variables in a variety of materials with different microstructures obtained using different processing methods. The HER of the punched hole was also well predicted using the similar approach, which reflected only the portion of post uniform elongation. The physical meaning drawn by our approach successfully explained the poor HER of austenitic steels despite their considerable elongation. The proposed method to predict HER is simple and cost-effective, so it will be useful in industry. In addition, the model provides a physical explanation of HER, so it will be useful in academia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Chen, J. K. Kim, S. K. Kim, G. S. Kim, K. G. Chin, and B. C. De Cooman, Steel Res. Int. 81, 552 (2010).

    Article  Google Scholar 

  2. S. K. Paul, M. Mukherjee, S. Kundu, and S. Chandra, Comp. Mater. Sci. 89, 189 (2014).

    Article  Google Scholar 

  3. J. I. Yoon, J. Jung, H. H. Lee, G.-S. Kim, and H. S. Kim, Met. Mater. Int. 22, 1009 (2016).

    Article  Google Scholar 

  4. X. Fang, Z. Fan, B. Ralph, P. Evans, and R. Underhill, J. Mater. Sci. 38, 3877 (2003).

    Article  Google Scholar 

  5. S. K. Paul, J. Mater. Eng. Perform. 23, 3610 (2014).

    Article  Google Scholar 

  6. S. Chatterjee and H. K. D. H. Bhadeshia, Mater. Sci. Tech. 23, 606 (2007).

    Article  Google Scholar 

  7. S. K. De, A. Deva, S. Mukhopadhyay, and B. K. Jha, Mater. Manuf. Process. 26, 37 (2011).

    Article  Google Scholar 

  8. X. Chen, H. Jiang, Z. Cui, C. Lian, and C. Lu, Procedia Engineer. 81, 718 (2014).

    Article  Google Scholar 

  9. R. D. Adamczyk and G. M. Michal, J. Applied Metalworking 4, 157 (1986).

    Article  Google Scholar 

  10. B. S. Levy and C. J. Tyne, J. Mater. Eng. Perform. 21, 2147 (2012).

    Article  Google Scholar 

  11. R. J. Comstock, D. K. Scherrer, and R. D. Adamczyk, J. Mater. Eng. Perform. 15, 675 (2006).

    Article  Google Scholar 

  12. K. Chung, N. Ma, T. Park, D. Kim, D. Yoo, and C. Kim, Int. J. Plasticity 27, 1485 (2011).

    Article  Google Scholar 

  13. R. Narayanasamy, C. S. Narayanan, P. Padmanabhan, and T. Venugopalan, Int. J. Adv. Manuf. Tech. 47, 365 (2010).

    Article  Google Scholar 

  14. D. J. Thomas, J. Fail. Anal. Preven. 12, 518 (2012).

    Article  Google Scholar 

  15. K.-I. Mori, Y. Abe, and Y. Suzui, J. Mater. Process. Tech. 210, 653 (2010).

    Article  Google Scholar 

  16. J. I. Yoon, J. Jung, S.-H. Joo, T. J. Song, K.-G. Chin, H. S. Kim, et al. Mater. Lett. 180, 322 (2016).

    Article  Google Scholar 

  17. J.-I. Hamada and H. Inoue, Mater. Trans. 51, 644 (2010).

    Article  Google Scholar 

  18. H. Liu, Z. Liu, and G. Wang, ISIJ Int. 49, 890 (2009).

    Article  Google Scholar 

  19. J.-I. Hamada, N. Ono, and H. Inoue, ISIJ Int. 51, 1740 (2011).

    Article  Google Scholar 

  20. J. Hu, K. Ikeda, and T. Murakami, J. Mater. Process. Tech. 73, 49 (1998).

    Article  Google Scholar 

  21. P. K. C. Venkatsurya, R. D. K. Misra, M. D. Mulholland, M. Manohar, and J. E. Hartmann Jr, Mat. Sci. Eng. A 575, 6 (2013).

    Article  Google Scholar 

  22. C. Haase, S. Chowdhury, L. Barrales-Mora, D. Molodov, and G. Gottstein, Metall. Mater. Trans. A 44, 911 (2013).

    Article  Google Scholar 

  23. K. Hasegawa, K. Kawamura, T. Urabe, and Y. Hosoya, ISIJ Int. 44, 603 (2004).

    Article  Google Scholar 

  24. O. Bouaziz, S. Allain, C. P. Scott, P. Cugy, and D. Barbier, Curr. Opin. Solid State Mater. Sci. 15, 141 (2011).

    Article  Google Scholar 

  25. L. Mu, Y. Wang, Y. Zang, and P. M. Araujo Stemler, J. Fail. Anal. Preven. 17, 321 (2017).

    Article  Google Scholar 

  26. C. Ye, J. Chen, C. Xia, and X. Yu, Int. J. Mater. Form. 9, 269 (2016).

    Article  Google Scholar 

  27. K. Zhao, L. Wang, Y. Chang, and J. Yan, Mech. Mater. 92, 107 (2016).

    Article  Google Scholar 

  28. S. Marth, H.-Å. Häggblad, M. Oldenburg, and R. Östlund, J. Mater. Process. Tech. 238, 315 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taekyung Lee or Chong Soo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Kwon, Y.J., Lee, T. et al. Prediction of hole expansion ratio for various steel sheets based on uniaxial tensile properties. Met. Mater. Int. 24, 187–194 (2018). https://doi.org/10.1007/s12540-017-7288-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-7288-2

Keywords

Navigation