Skip to main content
Log in

Yielding and post-yield behaviour of closed-cell cellular materials under multiaxial dynamic loading

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The paper focuses on characterisation of yielding and post-yield behaviour of metals with closed-cell cellular structure when subjected to multiaxial dynamic loading, considering the influence of the relative density, base material, strain rate and pore gas pressure. Research was conducted by extensive parametric fully-coupled computational simulations using the finite element code LS-DYNA. Results have shown that the macroscopic yield stress of cellular material rises with increase of the relative density, while its dependence on the hydrostatic stress decreases. The yield limit also rises with increase of the strain rate, while the hydrostatic stress influence remains more or less the same at different strain-rates. The macroscopic yield limit of the cellular material is also strongly influenced by the choice of base material since the base materials with higher yield limit contribute also to higher macroscopic yield limit of the cellular material. By increasing the pore gas filler pressure the dependence on hydrostatic stress increases while at the same time the yield surface shifts along the hydrostatic axis in the negative direction. This means that yielding at compression is delayed due to influence of the initial pore pressure and occurs at higher compressive loading, while the opposite is true for tensile loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, pp. 1–47, Cambridge University Press, Cambridge (1997).

    Book  Google Scholar 

  2. J. Banhart, Prog. Mater. Sci. 46, 559 (2001).

    Article  Google Scholar 

  3. M. F. Ashby, A. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, and H. N. G. Wadley, Metal Foams: A Design Guide, pp. 40–52, Elsevier Science, Burlington, Massachusetts (2000).

    Google Scholar 

  4. L. P. Lefebvre, J. Banhart, and D. C. Dunand, Adv. Eng. Mater. 10, 775 (2008).

    Article  Google Scholar 

  5. N. Movahedi, S. M. H. Mirbagheri, and S. R. Hoseini, Met. Mater. Int. 20, 757 (2014).

    Article  Google Scholar 

  6. M. Shiomi, S. Imagama, K. Osakada, and R. Matsumoto, J. Mater. Process. Tech. 210, 1203 (2010).

    Article  Google Scholar 

  7. I. V. Belova, C. Veyhl, T. Fiedler, and G. E. Murch, Scripta Mater. 65, 436 (2011).

    Article  Google Scholar 

  8. J. L. Yu, J. R. Li, and S. S. Hu, Mech. Mater. 38, 160 (2006).

    Article  Google Scholar 

  9. J. Hohe, V. Hardenacke, V. Fascio, Y. Girard, J. Baumeister, K. Stöbener, J. Weise, D. Lehmhus, S. Pattofatto, H. Zeng, H. Zhao, V. Calbucci, F. Rustichelli, and F. Fiori, Mater. Design 39, 20 (2012).

    Article  Google Scholar 

  10. T. Honeywill, Automotive Engineer 35, 38 (2010).

    Google Scholar 

  11. Y. H. Jo, Y. H. Kim, Y. J. Jo, J. G. Seong, S. Y. Chang, P. J. Reucroft, S. B. Kim, and W. H. Lee, Met. Mater. Int. 21, 337 (2015).

    Article  Google Scholar 

  12. T. Hipke, G. Lange and R. Poss, Taschenbuch für Aluminiumschäume, pp. 154–177, Alu Media, Düsseldorf (2007).

    Google Scholar 

  13. I. Duarte, M. Vesenjak, and L. Krstulovic-Opara, Compos. Struct. 109, 48 (2014).

    Article  Google Scholar 

  14. V. P. W. Shim, K. Y. Yap, and W. J. Stronge, Int. J. Impact Eng. 12, 585 (1992).

    Article  Google Scholar 

  15. C. Körner and R. F. Singer, Adv. Eng. Mater. 2, 159 (2000).

    Article  Google Scholar 

  16. A. Öchsner, M. Tane, and H. Nakajima, Mater. Lett. 60, 2690 (2006).

    Article  Google Scholar 

  17. A. Ochsner and K. Lamprecht, Mech. Res. Commun. 30, 573 (2003).

    Article  Google Scholar 

  18. G. J. Davies and S. Zhen, J. Mater. Sci. 18, 1899 (1983).

    Article  Google Scholar 

  19. M. Vesenjak, T. Fiedler, Z. Ren, and A. Öchsner, Adv. Eng. Mater. 10, 185 (2008).

    Article  Google Scholar 

  20. T. Fiedler, A. Öchsner, and J. Grácio, J. Compos. Mater. 44, 1165 (2010).

    Article  Google Scholar 

  21. A. Öchsner and C. Augustin, Multifunctional Metallic Hollow Sphere Structures, (eds. A. Öechsner and C. Augustin), pp. 31–46, Springer Berlin Heidelberg(2009).

  22. Y.-H. Lee, B.-K. Lee, I. Jeon, and K.-J. Kang, Acta Mater. 55, 6084 (2007).

    Article  Google Scholar 

  23. V. I. Shapovalov, MRS Bull. 19, 24 (1994).

    Article  Google Scholar 

  24. H. Nakajima, Prog. Mater. Sci. 52, 1091 (2007).

    Article  Google Scholar 

  25. V. Jain, R. Johnson, I. Ganesh, B. P. Saha, and Y. R. Mahajan, Mater. Sci. Eng. A 347, 109 (2003).

    Article  Google Scholar 

  26. P. J. Tan, S. R. Reid, J. J. Harrigan, Z. Zou, and S. Li, J. Mech. Phys. Solids 53, 2174 (2005).

    Article  Google Scholar 

  27. X. Y. Su, T. X. Yu, and S. R. Reid, Int. J. Impact Eng. 16, 651 (1995).

    Article  Google Scholar 

  28. X. Y. Su, T. X. Yu, and S. R. Reid, Int. J. Impact Eng. 16, 673 (1995).

    Article  Google Scholar 

  29. M. Vesenjak, Z. Ren, T. Fiedler, and A. Öchsner, J. Compos. Mater. 43, 2491 (2009).

    Article  Google Scholar 

  30. V. S. Deshpande and N. A. Fleck, Int. J. Impact Eng. 24, 277 (2000).

    Article  Google Scholar 

  31. M. Vesenjak, C. Veyhl, and T. Fiedler, Mater. Sci. Eng. A 541, 105 (2012).

    Article  Google Scholar 

  32. Z. Xue, A. Vaziri, and J. W. Hutchinson, CMES - Comp. Model. Eng. 10, 79 (2005).

    Google Scholar 

  33. S. Lee, F. Barthelat, N. Moldovan, H. D. Espinosa, and H. N. G. Wadley, Int. J. Solids Struct. 43, 53 (2006).

    Article  Google Scholar 

  34. K. A. Dannemann and J. Lankford, Mater. Sci. Eng. A 293, 157 (2000).

    Article  Google Scholar 

  35. T. Mukai, H. Kanahashi, Y. Yamada, K. Shimojima, M. Mabuchi, T. G. Nieh, and K. Higashi, Scripta Mater. 41, 365 (1999).

    Article  Google Scholar 

  36. M. Vesenjak, M. Borovinšek, T. Fiedler, Y. Higa, and Z. Ren, Mater. Lett. 110, 201 (2013).

    Article  Google Scholar 

  37. M. Vesenjak, L. Krstulovic-Opara, and Z. Ren, Polym. Test. 31, 705 (2012).

    Article  Google Scholar 

  38. M. Vesenjak, L. Krstulovic-Opara, Z. Ren, A. Öchsner, and Ž. Domazet, Exp. Mech. 49, 501 (2009).

    Article  Google Scholar 

  39. A. Ohrndorf, P. Schmidt, U. Krupp, and H. J. Christ, Werkstoffprüfung 2000, pp.7–8, Deutscher Verband für Materialforschung und-prüfung e.V., Bad Nauheim (2000).

    Google Scholar 

  40. K. Kitazono, E. Sato, and K. Kuribayashi, Acta Mater. 51, 4823 (2003).

    Article  Google Scholar 

  41. J. Lankford and K. A. Dannemann, Materials Research Society Symposium, pp. 103–108, Materials Research Society, Warrendale (1998).

    Google Scholar 

  42. M. Vesenjak, Z. Ren, and A. Ochsner, Int. J. Mater. Eng. Inv. 1, 175 (2009).

    Article  Google Scholar 

  43. B. M. Shkolnikov, 7th International LS-DYNA Users Conference, pp. 701–714, Livermore, California: Livermore Software Technology Corporation (LSTC), Dearborn, Michigan (2002).

    Google Scholar 

  44. M. Vesenjak, L. Krstulovic-Opara, and Z. Ren, Polym. Test. 32, 1538 (2013).

    Article  Google Scholar 

  45. A. Öchsner, G. Mishuris, and J. Grácio, Third International Conference on Mathematical Modeling and Computer Simulation of Materials Technologies - MMT-2004, pp. 368–377, College of Judea and Samaria, Ariel (2004).

    Google Scholar 

  46. A. Öchsner and G. Mishuris, Finite Elem. Anal. Des. 45, 104 (2009).

    Article  Google Scholar 

  47. M. Alkhader and M. Vural, Int. J. Plasticity 26, 1591 (2010).

    Article  Google Scholar 

  48. T. Fiedler, M. A. Sulong, V. Mathier, I. V. Belova, C. Younger, and G. E. Murch, Comp. Mater. Sci. 81, 246 (2014).

    Article  Google Scholar 

  49. A. Öchsner, Experimentelle und Numerische Untersuchung des Elasto-Plastischen Verhaltens Zellularer Modellwerkstoffe, p. 56, University Erlangen, Nuremberg (2003).

    Google Scholar 

  50. S. Yim, W. Lee, D. Cho, and I. Park, Met. Mater. Int. 21, 408 (2015).

    Article  Google Scholar 

  51. Y. Cho, W. Lee, and Y. Park, Met. Mater. Int. 20, 1085 (2014).

    Article  Google Scholar 

  52. A. Öchsner, W. Winter, and G. Kuhn, Arch. Appl. Mech. 73, 261 (2003).

    Article  Google Scholar 

  53. J. Bin, W. Zejun, and Z. Naiqin, Scripta Mater. 56, 169 (2007).

    Article  Google Scholar 

  54. S. V. Raj and J. A. Kerr Effect of Microstructural Parameters on the Relative Densities of Metal Foams, p. 4, National Aeronautics and Space Administration, Cleveland, Ohio (2010).

    Google Scholar 

  55. P. Jacob and L. Goulding, An Explicit Finite Element Primer, p. 47, NAFEMS, Glasgow (2002).

    Google Scholar 

  56. J. O. Hallquist, LS-DYNA Theoretical Manual, pp. 2940–2948, Livermore Software Technology Corporation, Livermore, California (2006).

    Google Scholar 

  57. S. R. Bodner and P. S. Symonds, J. Appl. Mech. 29, 719 (1962).

    Article  Google Scholar 

  58. J. Hallquist, LS-DYNA Keyword User's Manual, pp. 1939–1946, Livermore Software Technology Corporation, Livermore, California (2007).

    Google Scholar 

  59. W. F. Hosford, Mechanical Behaviour of Materials, pp. 216–251, Cambridge University Press, New York (2005).

    Book  Google Scholar 

  60. I. H. Shames, Mechanics of Deformable Solids, pp. 329–335, Prentice Hall, Englewood Cliffs (1964).

    Google Scholar 

  61. D. Mohr, M. Dunand, and K.-H. Kim, Int. J. Plasticity 26, 939 (2010).

    Article  Google Scholar 

  62. O. Mahrenholtz and H. Ismar, Arch. Appl. Mech. 50, 217 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matej Vesenjak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vesenjak, M., Ren, Z. Yielding and post-yield behaviour of closed-cell cellular materials under multiaxial dynamic loading. Met. Mater. Int. 22, 435–442 (2016). https://doi.org/10.1007/s12540-016-5550-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-016-5550-7

Keywords

Navigation