Skip to main content
Log in

Measurements of microhardness during transient horizontal directional solidification of Al-Rich Al-Cu alloys: Effect of thermal parameters, primary dendrite arm spacing and Al2Cu intermetallic phase

  • Review Paper
  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this work, the effect of the growth rate (VL) and cooling rate (TR), primary dendritic arm spacing (λ1) and Al2Cu intermetallic phase on the microhardness was investigated during transient horizontal directional solidification of Al-3wt%Cu and Al-8wt%Cu alloys. Microstructural characterization of the investigated alloys was performed using traditional techniques of metallography, optical and SEM microscopy and X-Ray diffraction. The microhardness evolution as a function of the thermal and microstructural parameters (VL, TR, and λ1) was evaluated using power and Hall-Petch type experimental laws, which were compared with other laws in the literature. In order to examine the effect of the Al2Cu intermetallic phase, microhardness measurements were performed in interdendritic regions. Finally, a comparative analysis was performed between the experimental data of this work and theoretical models from the literature that have been proposed to predict primary dendrite arm spacing, which have been tested in numerous works considering upward directional solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Çadirli, Met. Mater. Int. 19, 411 (2013).

    Article  Google Scholar 

  2. E. Sjölander, Ph.D. Thesis, pp.1–45, School of Engineering, Jönköping University Jönköping, Sweden (2011).

    Google Scholar 

  3. M. Tash, F. H. Samuel, F. Mucciardi, and H. W. Doty, Mater. Sci. Eng. A 443, 185 (2007).

    Article  Google Scholar 

  4. E. Ozbakir, Ms. Sci. Thesis, pp.1–98, McGill University, Montréal Québec, Canada (2008).

    Google Scholar 

  5. G. E. Totten and S. D. MacKenzie, Handbook of Aluminum: Physical Metallurgy and Processes, p.724, Marcel Dekker, New York (2003).

    Book  Google Scholar 

  6. J. M. V. Quaresma, C. A. Santos, and A. Garcia, Metall. Mater. Trans. A 31, 3167 (2000).

    Article  Google Scholar 

  7. O. L. Rocha, C. A. Siqueira, and A. Garcia, Metall. Mater. Trans. A 34, 995 (2003).

    Article  Google Scholar 

  8. A. Geying and L. Lixin, J. Cryst. Growth 80, 383 (1987).

    Article  Google Scholar 

  9. M. Gündüz and E. Çadirli, Mater. Sci. Eng. A 327, 167 (2002).

    Article  Google Scholar 

  10. R. Trivedi and W. Kurz, Int. Mater. Rev. 39, 49 (1994).

    Article  Google Scholar 

  11. J. E. Spinelli, I. L. Ferreira, and A. Garcia, J. Alloys Compd. 384, 217 (2004).

    Article  Google Scholar 

  12. D. B. Carvalho, E. C. Guimarães, A. L. Moreira, D. J. Moutinho, J. M. D. Filho, and O. L. Rocha, Mater. Res. 16, 874 (2013).

    Article  Google Scholar 

  13. J. N. Silva, D. J. Moutinho, A. L. Moreira, I. L. Ferreira, and O. L. Rocha, Mater. Chem. Phys. 130, 179 (2011).

    Article  Google Scholar 

  14. J. N. Silva, D. J. Moutinho, A. L. Moreira, I. L. Ferreira, and O. L. Rocha, J. Alloys Compd. 478, 358 (2009).

    Article  Google Scholar 

  15. D. B. Carvalho, A. L. Moreira, D. J. Moutinho, J. M. Filho, O. L. Rocha, and J. E. Spinelli, Mater. Res. 17, 498 (2013).

    Article  Google Scholar 

  16. E. O. Hall, Proc. Phys. Soc. B 64, 742 (1951).

    Article  Google Scholar 

  17. N. J. Petch, J. Iron Steel Inst. Lond. 174, 25 (1953)

  18. H. Kaya, E. Çadirli, U. Böyük, and N. Marasli, Appl. Surf. Sci. 255, 3071 (2008).

    Article  Google Scholar 

  19. H. Kaya, U. Böyük, E. Çadirli, and N. Marasli, Mater. Design 34, 707 (2012).

    Article  Google Scholar 

  20. H. Kaya, U. Böyük, E. Çadirli, and N. Marasli, Met. Mater. Int. 19, 39 (2013).

    Article  Google Scholar 

  21. A. J. Vasconcelos, C. V. A. Silva, A. L. S. Moreira, M. P. S. Silva, and O. L. Rocha, R. Esc. Minas 67, 173 (2014).

    Article  Google Scholar 

  22. E. Karaköse and M. Keskin, Mater. Design 32, 4970 (2011).

    Article  Google Scholar 

  23. O. L. Rocha, C. A. Siqueira, and Garcia, A. Mater. Sci. Eng. A 361, 111 (2003).

    Article  Google Scholar 

  24. F. Sá, O. L. Rocha, C. A. Siqueira, and A. Garcia, Mater. Sci. Eng. A 373, 131 (2004).

    Article  Google Scholar 

  25. M. D. Peres, C. A. Siqueira, and A. Garcia, J. Alloys Compd. 381, 168 (2004).

    Article  Google Scholar 

  26. M. V. Canté, J. E. Spinelli, N. Cheung, and A. Garcia, Met. Mater. Int. 16, 39 (2010).

    Article  Google Scholar 

  27. D. M. Rosa, J. E. Spinelli, I. L. Ferreira, and A. Garcia, Metall. Mater. Trans. A 39, 2161 (2008).

    Article  Google Scholar 

  28. K. S. Cruz, E. S. Meza, F. A. P. Fernandes, J. M. V. Quaresma, L. C. Casteletti, and A. Garcia, Metall. Mater. Trans. A 41, 972 (2010).

    Article  Google Scholar 

  29. J. E. Spinelli, M. D. Peres, and A. Garcia, J. Alloys Compd. 403, 228 (2005).

    Article  Google Scholar 

  30. P. R. Goulart, Ph. D. Thesis, pp.1-123, University of Campinas, Campinas, Brazil (2010).

  31. I. L. Ferreira, D. J. Moutinho, L. G. Gomes, O. L. Rocha, P. R. Goulart, and A. Garcia, Mater. Sci. Forum 636–637, 643 (2010).

  32. J. E. Spinelli, I. L. Ferreira, and A. Garcia, J. Alloys Compd. 384, 217 (2004).

    Article  Google Scholar 

  33. C. Brito, C. A. Siqueira, J. E. Spinelli, and A. Garcia, J. Phys. Chem. Solids 73, 1173 (2012).

    Article  Google Scholar 

  34. E. Scheil, Z. Metallkunde. 34, 70 (1942).

    Google Scholar 

  35. D. Bouchard and J. S. Kirkaldy, Metall. Mater. Trans. B 28, 651 (1997).

    Article  Google Scholar 

  36. J. D. Hunt and S. Z. Lu, Metall. Mater. Trans. A 27, 611 (1966).

    Article  Google Scholar 

  37. E. Çadirli and M. Gündüz, J. Mater. Sci. 35, 3837 (2000).

    Article  Google Scholar 

  38. L. Yu, G. L. Ding, J. Reye, S. N. Ojha, and S. N. Tewari, Metall. Mater. Trans. A 30, 2463 (1999).

    Article  Google Scholar 

  39. S. P. O’Dell, Ding G. L. and S. N. Tewari, Metall. Mater. Trans. A 30, 2159 (1999).

    Article  Google Scholar 

  40. X. Wan, Q. Han, and J. D. Hunt, Acta Mater. 45, 3975 (1997).

    Article  Google Scholar 

  41. G. Ding, W. Huang, X. Lin, and Y. Zhou, J. Cryst. Growth 177, 281 (1997).

    Article  Google Scholar 

  42. J. Feng, W.D. Huang, X. Lin, Q.Y. Pan, T. Li, and Y. H. Zhou, J. Cryst. Growth 197, 393 (1999).

    Article  Google Scholar 

  43. X. Lin, W. Huang, J. Feng, T. Li, and Y. H. Zhou, Acta Mater. 47, 3271 (1999).

    Article  Google Scholar 

  44. N. Tiedje, P. N. Hansen, and A. S. Pedersen, Metall. Mater. Trans. A 27, 4084 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otávio Lima Rocha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barros, A.S., Magno, I.A., Souza, F.A. et al. Measurements of microhardness during transient horizontal directional solidification of Al-Rich Al-Cu alloys: Effect of thermal parameters, primary dendrite arm spacing and Al2Cu intermetallic phase. Met. Mater. Int. 21, 429–439 (2015). https://doi.org/10.1007/s12540-015-4499-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-4499-2

Keywords

Navigation