Skip to main content
Log in

On the superposition of strengthening mechanisms in dispersion strengthened alloys and metal-matrix nanocomposites: Considerations of stress and energy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Yield strength improvement in dispersion strengthened alloys and nano particle-reinforced composites by well-known strengthening mechanisms such as solid solution, grain refinement, coherent and incoherent dispersed particles, and increased dislocation density resulting from work-hardening can all be described individually. However, there is no agreed upon description of how these mechanisms combine to determine the yield strength. In this work, we propose an analytical yield strength prediction model combining arithmetic and quadratic addition approaches based on the consideration of two types of yielding mechanisms; stress-activated and energy-activated. Using data available in the literature for materials of differing grain sizes, we consider the cases of solid solutions and coherent precipitates to show that they follow stress-activated behavior. Then, we applied our model with some empirical parameters to precipitationhardenable materials of various grain sizes in both coherent and incoherent precipitate conditions, which demonstrated that grain boundary and Orowan-strengthening can be treated as energy-activated mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Asgharzadeh, A. Simchi, and H. S. Kim, Metall. Mater. Trans. A. 42, 816 (2011).

    Article  Google Scholar 

  2. H. Z. Ye and X. Y. Liu, J. Mater. Sci. 39, 6153 (2007).

    Article  Google Scholar 

  3. W. L. E. Wong and M. Gupta, Compos. Sci. Technol. 67, 1541 (2007).

    Article  Google Scholar 

  4. K. S. Tun and M. Gupta, Mater. Sci. Eng. A. 527, 5550 (2007).

    Article  Google Scholar 

  5. J. Ye, B. Q. Han, Z. Lee, B. Ahn, S. R. Nutt, and J. M. Schoenung, Scripta Mater. 53, 481 (2005).

    Article  Google Scholar 

  6. G. Cao, J. Kobliska, H. Konishi, and X. Li, Metall. Mater. Trans. A. 39, 880 (2008).

    Article  Google Scholar 

  7. J. B. Ferguson, F. Sheykh-Jaberi, C.-S. Kim, P. K. Rohatgi, and K. Cho, Mater. Sci. Eng. A. 558, 193 (2012).

    Article  Google Scholar 

  8. G. E. Dieter, Mechanical Metallurgy, 3rd ed, McGraw-Hill, New York (1986).

    Google Scholar 

  9. U. F. Kocks, A. S. Argon, and M. F. Ashby, Prog. Mater. Sci. 19, 1 (1975).

    Article  Google Scholar 

  10. R. Ebeling and M. F. Ashby, Phil. Mag. 13, 805 (1966).

    Article  Google Scholar 

  11. U. Lagerpusch, V. Mohles, D. Baither, B. Anczykowski, and E. Nembach, Acta Mater. 48, 3647 (2000).

    Article  Google Scholar 

  12. R. J. Arsenault, Mater. Sci. Eng. 64, 171 (1984).

    Article  Google Scholar 

  13. C. S. Goh, J. Wei, L. C. Lee, and M. Gupta, Acta Mater. 55, 5115 (2007).

    Article  Google Scholar 

  14. L. H. Dai, Z. Ling, and Y. L. Bai, Compos. Sci. Technol. 61, 1057 (2001).

    Article  Google Scholar 

  15. T. W. Clyne and P. J. Withers, An Introduction to Metal Matrix Composites, 1st Ed, New York, Cambridge University Press (1995).

    Google Scholar 

  16. D. Hull and T. W. Clyne, An Introduction to Composite Materials, 2nd ed, Cambridge University Press, New York (1996).

    Book  Google Scholar 

  17. H. Lilholt, Deformation of Multi-Phase and Particle Containing Materials, Roskilde, Denmark, Riso National Lab (1985).

    Google Scholar 

  18. Z. Zhang and D. L. Chen, Scripta Mater. 54, 1321 (2006).

    Article  Google Scholar 

  19. C.-S. Kim, I. Sohn, M. Nezafati, J. B. Ferguson, B. F. Schultz, Z. Bajestani-Gohari, P. K. Rohatgi, and K. Cho, J. Mater. Sci. 48, 4191 (2013).

    Article  Google Scholar 

  20. R. Vogt, Z. Zhang, Y. Li, M. Bonds, N. D. Browning, E. J. Lavernia, and J. M. Schoenung, Scripta Mater. 61, 1052 (2009).

    Article  Google Scholar 

  21. A. M. Redsten, E. M. Klier, A. M. Brown, and D. C. Dunand, Mater. Sci. Eng. A. 201, 88 (1995).

    Article  Google Scholar 

  22. V. C. Nardone, Scripta Metall. 21, 1313 (1987).

    Article  Google Scholar 

  23. V. C. Nardone and K. M. Prewo, Scripta Metall. 20, 43 (1986).

    Article  Google Scholar 

  24. V. C. Nardone and K. M. Prewo, Scripta Metall. 23, 291 (1989).

    Article  Google Scholar 

  25. R. J. Arsenault, Scripta Metall. 23, 293 (1989).

    Article  Google Scholar 

  26. N. Chawla, C. Andres, J. W. Jones, and J. E. Allison, Metall. Trans. A. 29, 2843 (1998).

    Article  Google Scholar 

  27. N. Chawla, U. Habel, Y.-L. Shen, C. Andres, J. W. Jones, and J. E. Allison, Metall. Trans. A. 31, 531 (2000).

    Article  Google Scholar 

  28. D. N. Seidman, E. A. Marquis, and D. C. Dunand, Acta Mater. 50, 4021 (2002).

    Article  Google Scholar 

  29. Y. T. Zhao, S. L. Zhang, G. Chen, X. N. Cheng, and C. Q. Wang, Compos. Sci. Technol. 68, 1463 (2008).

    Article  Google Scholar 

  30. E. Hornbogen and G. Staniek, J. Mater. Sci. 9, 879 (1974).

    Article  Google Scholar 

  31. M. De Cicco, H. Konishi, G. Cao, H. S. Choi, L. S. Turng, J. H. Perepezko, S. Kou, R. Lakes, and X. Li, Metall. Mater. Trans. A. 40A, 3038 (2009).

    Article  Google Scholar 

  32. J. W. Morris, Proc. International Symposium on Ultrafine Grained Steels, (eds. S. Takaki and T. Maki) Iron and Steel Inst. Tokyo, Japan (2001).

  33. V. Bata and E.V. Pereloma, Acta Mater. 52, 657 (2004).

    Article  Google Scholar 

  34. S. Thangaraju, M. Heilmaier, B. S. Murty, and S. S. Vadlamani, Adv. Eng. Mater. 14, 892 (2012).

    Article  Google Scholar 

  35. M. A. Meyers and K. K. Chawla, Mechanical Metallurgy: Principles and Applications, 1st ed, Englewood Cliffs: Prentice Hall. (1984).

    Google Scholar 

  36. V. G. Gavriljuk, Scripta Mater. 52, 951 (2005).

    Article  Google Scholar 

  37. W. Mangen and E. Nembach, Acta Metall. 37, 1451 (1989).

    Article  Google Scholar 

  38. W. B. Morrison, Trans ASM. 59, 824 (1966).

    Google Scholar 

  39. M. G. Mendiratta, S. M. Sastry, and J. V. Smith, J. Mater. Sci. 11, 1853 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferguson, J.B., Schultz, B.F., Venugopalan, D. et al. On the superposition of strengthening mechanisms in dispersion strengthened alloys and metal-matrix nanocomposites: Considerations of stress and energy. Met. Mater. Int. 20, 375–388 (2014). https://doi.org/10.1007/s12540-014-2017-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-2017-6

Key words

Navigation