Skip to main content
Log in

Modeling Investigations and Analysis of Temperature Dependent Yield Strength of Oxide Dispersion Strengthened Superalloys Considering the Effect of Dislocations Climbing and Particles Growth

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, firstly, starting from the effect on material yield, an equivalent relationship between dislocation climbing activation energy, thermal energy, and elastic deformation energy is established, and the weakening effect of dislocation climbing on yield strength and its variation with temperature are studied. Then, the dispersion strengthening, fine grain strengthening, and dislocation strengthening mechanisms and their evolution with temperature are quantitatively characterized. Furthermore, the quantitative effects of particle and grain growth on the main control mechanism when the temperature is greater than the recrystallization temperature were effectively introduced. Consequently, a theoretical characterization model is derived for predicting the temperature dependent yield strength of oxide dispersion strengthened superalloy. The predictions of the model are in good consistency with available experimental results of widely used oxide dispersion strengthened superalloys. Moreover, using the proposed model, the variation of the contribution of different influence mechanisms to the yield strength with temperature was analyzed, and the main microstructure evolutions that influence the temperature dependent yield strength of oxide dispersion strengthened superalloy has been theoretically revealed. Meanwhile, the effects of oxide particle size and volume fraction on the yield strength were studied. More importantly, this work not only provides a quantitative tool for monitoring the yield failure of oxide dispersion strengthened superalloy at high temperatures, but also lays a theoretical foundation for further improving the high-temperature yield strength of oxide dispersion strengthened superalloy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L. Zhang, X. Qu, X. He, R.-U. Din, H. Liu, M. Qin, H. Zhu, J. Mater. Eng. Perform. 21, 2487–2494 (2012)

    Article  CAS  Google Scholar 

  2. Y. Ijiri, N. Oono, S. Ukai, S. Ohtsuka, T. Kaito, Y. Matsukawa, Nucl. Mater. Energy. 9, 378–382 (2016)

    Article  Google Scholar 

  3. A.J. Zimmermann, H.R. Sandim, A.F. Padilha, Rem-Rev. Esc. Minas. 63, 287–292 (2010)

    Article  Google Scholar 

  4. J.H. Schneibel, C.T. Liu, M.K. Miller, M.J. Mills, P. Sarosi, M. Heilmaier, D. Sturm, Scripta Mater. 61, 793–796 (2009)

    Article  CAS  Google Scholar 

  5. Y. Zhao, H. Yao, X. Song, J. Jia, Z. Xiang, Met. Mater. Int. 24, 51–59 (2018)

    Article  Google Scholar 

  6. M. Mehdizadeh, H. Farhangi, Met. Mater. Int. 28, 2719–2734 (2022)

    Article  CAS  Google Scholar 

  7. D. Mcclintock, M.A. Sokolov, D.T. Hoelzer, R.K. Nanstad, J. Nucl. Mater. 392, 353–359 (2009)

    Article  CAS  Google Scholar 

  8. Z. Oksiuta, P. Olier, Y. De Carlan, N. Baluc, J. Nucl. Mater. 393, 114–119 (2009)

    Article  CAS  Google Scholar 

  9. M.A. Sokolov, D.T. Hoelzer, R.E. Stoller, D.A. McClintock, J. Nucl. Mater. 367, 213–216 (2007)

    Article  Google Scholar 

  10. T. Boegelein, S.N. Dryepondt, A. Pandey, K. Dawson, G.J. Tatlock, Acta Mater. 87, 201–215 (2015)

    Article  CAS  Google Scholar 

  11. J.-L. Lin, K. Mo, D. Yun, Y. Miao, X. Liu, H. Zhao, D.T. Hoelzer, J.-S. Park, J. Almer, G. Zhang, J. Nucl. Mater. 471, 289–298 (2016)

    Article  CAS  Google Scholar 

  12. D. Srinivasan, R. Corderman, P. Subramanian, Mat. Sci. Eng. A-Struct 416, 211–218 (2006)

    Article  Google Scholar 

  13. J. Malaplate, F. Mompiou, J. Béchade, T. Berghe, M. Ratti, J. Nucl. Mater. 417, 205–208 (2011)

    Article  CAS  Google Scholar 

  14. C. Sun, D. Brown, B. Clausen, D. Foley, K. Yu, Y. Chen, S. Maloy, K. Hartwig, H. Wang, X. Zhang, Int. J. Plast. 53, 125–134 (2014)

    Article  CAS  Google Scholar 

  15. G.-H. Zhao, X. Liang, B. Kim, P. Rivera-Díaz-del-Castillo, Mat. Sci. Eng. A-Struct 756, 156–160 (2019)

    Article  CAS  Google Scholar 

  16. R. Wang, W. Guo, J. Wang, K. Yuan, L. Liu, P. Li, Y. Li, Mech. Mater. 151, 103641 (2020)

    Article  Google Scholar 

  17. Q. Li, F. Qiu, Y.-Y. Gao, B.-X. Dong, S.-L. Shu, M.-M. Lv, H.-Y. Yang, Q.-L. Zhao, Q.-C. Jiang, J. Alloys Compd. 788, 1309–1321 (2019)

    Article  CAS  Google Scholar 

  18. Q. Li, F. Qiu, B.-X. Dong, X. Gao, S.-L. Shu, H.-Y. Yang, Q.-C. Jiang, Mat. Sci. Eng. A-Struct. 777, 139081 (2020)

    Article  CAS  Google Scholar 

  19. H. Yu, S. Ukai, N. Oono, J. Alloys Compd. 714, 715–724 (2017)

    Article  CAS  Google Scholar 

  20. H. Wei, Y. Xiang, P. Ming, Commun. Comput. Phys. 4, 275–293 (2008)

    Google Scholar 

  21. W. Li, F. Yang, D. Fang, Acta. Mech. Sinica-Prc 26(2), 235–239 (2010)

    Article  CAS  Google Scholar 

  22. T. Cheng, D. Fang, Y. Yang, J. Appl. Phys. 123, 085902 (2018)

    Article  Google Scholar 

  23. P. Geng, W. Li, X. Zhang, X. Zhang, Y. Deng, H. Kou, J. Phys. D Appl. Phys. 50, 40LT02 (2017)

    Article  Google Scholar 

  24. X. Zhang, W. Li, J. Shao, Y. Deng, J. Ma, Y. Li, D. Li, Physica B 584, 412071 (2020)

    Article  CAS  Google Scholar 

  25. P. Dong, W. Li, S. Zheng, Y. Li, Y. Deng, M. Yang, X. Zhang, Z. Qu, D. Li, Mater. Res. Express. 6, 126114 (2020)

    Article  Google Scholar 

  26. W. Li, X. Zhang, H. Kou, R. Wang, D. Fang, Int. J. Mech. Sci. 105, 273–278 (2016)

    Article  Google Scholar 

  27. J. Lutsko, D. Wolf, S. Phillpot, S. Yip, Phys. Rev. B 40, 2841 (1989)

    Article  CAS  Google Scholar 

  28. V. Sorkin, E. Polturak, J. Adler, Phys. Rev. B 68, 174103 (2003)

    Article  Google Scholar 

  29. C. Reina, J. Marian, J. Mech. Phys. Solids 69, 123–131 (2014)

    Article  Google Scholar 

  30. X. Zhang, W. Li, J. Ma, Y. Li, X. Zhang, X. Zhang, J. Alloys Compd. 851, 156747 (2021)

    Article  CAS  Google Scholar 

  31. X. Zhang, W. Li, J. Ma, Y. Li, Y. Deng, M. Yang, Y. Zhou, X. Zhang, P. Dong, Compos. Struct. 244, 112246 (2020)

    Article  Google Scholar 

  32. W. Li, J. Ma, H. Kou, J. Shao, X. Zhang, Y. Deng, Y. Tao, D. Fang, Int. J. Plast. 116, 143–158 (2019)

    Article  CAS  Google Scholar 

  33. M. Yang, W. Li, Z. Zhao, Y. He, X. Zhang, Y. Ma, P. Dong, S. Zheng, Compos. Sci. Technol. 220, 109265 (2022)

    Article  CAS  Google Scholar 

  34. Y. He, W. Li, M. Yang, Z. Zhao, X. Zhang, P. Dong, S. Zheng, Y. Ma, Int. J. Fatigue 161, 106896 (2022)

    Article  CAS  Google Scholar 

  35. X. Zhang, W. Li, J. Ma, P. Geng, J. Shao, X. Wu, Comp. Mater. Sci. 129, 147–155 (2017)

    Article  CAS  Google Scholar 

  36. L.C. Stearns, M.P. Harmer, J. Am. Ceram. Soc. 79, 3013–3019 (1996)

    Article  CAS  Google Scholar 

  37. K. Luo, S. Liu, H. Xiong, Y. Zhang, C. Kong, H. Yu, Met. Mater. Int. 28, 2811–2821 (2022)

    Article  CAS  Google Scholar 

  38. G. Fu, N. Li, A. Misra, R. Hoagland, H. Wang, X. Zhang, Mat. Sci. Eng. A-Struct. 493(1–2), 283–287 (2008)

    Article  Google Scholar 

  39. M. Munoz-Morris, C.G. Oca, D.G. Morris, Acta Mater. 50, 2825–2836 (2002)

    Article  CAS  Google Scholar 

  40. G.J. Zhang, Y.J. Sun, R.M. Niu, J. Sun, J.F. Wei, B.H. Zhao, L.X. Yang, Adv. Eng. Mater. 6, 943–948 (2004)

    Article  CAS  Google Scholar 

  41. R. Tao, Y. Zhao, G. Chen, X. Kai, Met. Mater. Int. 28, 3145–3159 (2022)

    Article  CAS  Google Scholar 

  42. B. Wang, W. Ning, Y. Yang, H. Zhong, X. Zhang, R. Liu, T. Nonferr, Metal. Soc. 28, 1132–1140 (2018)

    CAS  Google Scholar 

  43. W. Hu, Z. Huang, Q. Yu, Y. Wang, Y. Jiao, Y. Zhou, H. Zhai, Met. Mater. Int. 27, 3003–3012 (2021)

    Article  CAS  Google Scholar 

  44. F. Liu, Study on fabrication and strengthening mechanism of oxide dispersion strengthened iron--based super alloy, Central South University (2012)

  45. Y. Zhao, Q. Fang, Y. Liu, P. Wen, Y. Liu, Int. J. Plast. 69, 89–101 (2015)

    Article  CAS  Google Scholar 

  46. E. Arzt, D. Wilkinson, Acta Metall. 34, 1893–1898 (1986)

    Article  CAS  Google Scholar 

  47. J.H. Kim, T.S. Byun, D.T. Hoelzer, C.H. Park, J.T. Yeom, J.K. Hong, Mat. Sci. Eng. A-Struct 559, 111–118 (2013)

    Article  CAS  Google Scholar 

  48. H. Yu, Chin. J. Nonferrous Metals 30, 507–517 (2020)

    Google Scholar 

  49. N. Kanetake, M. Nomura, T. Choh, Mater. Sci. Technol. 11, 1246–1252 (1995)

    Article  CAS  Google Scholar 

  50. Q. Meng, Z. Wang, Eng. Fract. Mech. 142, 170–183 (2015)

    Article  Google Scholar 

  51. T. Xia, Microstructure and Mechanical Properties of Nanoparticle Dispersion Strengthened Ultrafine Grained Superalloys, Shanghai Jiao Tong University (2018)

  52. W. Li, H. Kou, X. Zhang, J. Ma, D. Fang, Mech. Mater. 139, 103194 (2019)

    Article  Google Scholar 

  53. P. Dong, Y. Ma, X. Zhang, Y. He, Z. Zhao, J. Ma, W. Li, Y. Li, Compos. Struct. 316, 117051 (2023)

    Article  CAS  Google Scholar 

  54. B. Toulas, The Melting Point of Steel Alloys (2019). https://www.engineeringclicks.com/melting-point-of-steel/. Accessed 27 Sep 2023

  55. D. Ye, J. Hu, Practical Handbook of Thermodynamic Data for Inorganic Compounds (Metallurgy Industry Publishing House, Beijing, 1981)

    Google Scholar 

  56. W. Koster, Ztsch. für Metallkunde 39, 1 (1948)

    CAS  Google Scholar 

  57. M.F. Giordana, P.F. Giroux, I. Alvarez-Armas, M. Sauzay, A. Armas, T. Kruml, Mat. Sci. Eng. A-Struct 550, 103–111 (2012)

    Article  CAS  Google Scholar 

  58. Y. Mao, J. Engels, A. Houben, M. Rasinski, J. Steffens, A. Terra, C. Linsmeier, J. Coenen, Nucl. Mater. Energy. 10, 1–8 (2017)

    Article  Google Scholar 

  59. I. Holzer, E. Kozeschnik, Mat. Sci. Eng. A-Struct 527, 3546–3551 (2010)

    Article  Google Scholar 

  60. E. Galindo-Nava, L. Connor, C. Rae, Acta Mater. 98, 377–390 (2015)

    Article  CAS  Google Scholar 

  61. R. Schaeublin, T. Leguey, P. Spätig, N. Baluc, M. Victoria, J. Nucl. Mater. 307, 778–782 (2002)

    Article  Google Scholar 

  62. H. Asahi, A. Yagi, M. Ueno, ISIJ Int. 33, 1190–1195 (1993)

    Article  CAS  Google Scholar 

  63. S. Takaki, Mater. Sci. Forum Trans. Tech. Publ. 706, 181–185 (2012)

    Article  Google Scholar 

  64. R. Kozar, A. Suzuki, W. Milligan, J. Schirra, M. Savage, T. Pollock, Metall. Mater. Trans. A 40, 1588–1603 (2009)

    Article  Google Scholar 

  65. F. Nix, D. MacNair, Phys. Rev. 60, 597 (1941)

    Article  CAS  Google Scholar 

  66. Y. Liu, F. Sommer, E. Mittemeijer, Thermochim. Acta 413, 215–225 (2004)

    Article  CAS  Google Scholar 

  67. Y. Gan, Z.L. Tian, H. Dong, D. Feng, X.L. Wang, Gangtie Cailiao Shouce, 1st edn. (Chemical Industry Press, Beijing, 2009)

    Google Scholar 

  68. Y. Dalun, H. Jianhua, Practical Manual of Inorganic Thermodynamic Data, Edition 2 (Metallurgy Industry Press, Beijing, 2002)

    Google Scholar 

  69. T. Thiyagarajan, P. Ananthapadmanabhan, K. Sreekumar, Y. Chakravarthy, A. Das, L. Gantayet, B. Selvan, K. Ramachandran, Surf. Eng. 28, 646–656 (2012)

    Article  CAS  Google Scholar 

  70. K. Hw, Physical Metallurgy, 3rd edn. (North-Holland, Amsterdam, 1983)

    Google Scholar 

  71. R. Gaboriaud, F. Pailloux, P. Guerin, F. Paumier, J. Phys. D Appl. Phys. 33, 2884 (2000)

    Article  CAS  Google Scholar 

  72. R. Singer, G. Gessinger, Metall. Trans. A 13, 1463–1470 (1982)

    Article  CAS  Google Scholar 

  73. S.H. Park, H.S. Kim, B.S. You, Met. Mater. Int. 20, 291–296 (2014)

    Article  CAS  Google Scholar 

  74. J. Bocos, E. Novillo, M. Petite, A. Iza-Mendia, I. Gutierrez, Metall. Mater. Trans. A 34, 827–839 (2003)

    Article  Google Scholar 

  75. B. Leng, S. Ukai, Y. Sugino, Q. Tang, T. Narita, S. Hayashi, F. Wan, S. Ohtsuka, T. Kaito, ISIJ Int. 51, 951–957 (2011)

    Article  CAS  Google Scholar 

  76. J. Pan, J. Tong, M. Tian, Fundamentals of Materials Science, Revised edn. (2011)

    Google Scholar 

  77. T. Cheng, D. Fang, Y. Yang, J. Appl. Mech. 85(3), 031005 (2018)

    Article  Google Scholar 

  78. Q. Jiang, H. Shi, M. Zhao, Acta Mater. 47, 2109–2112 (1999)

    Article  CAS  Google Scholar 

  79. Z. Zhang, M. Zhao, Q. Jiang, Semicond. Sci. Technol. 16, L33 (2001)

    Article  CAS  Google Scholar 

  80. R. Klueh, Metall. Trans. A 20, 463–470 (1989)

    Article  Google Scholar 

  81. L. Ye, M. Qin, L. Zhang, B. Jia, Z. Cao, D. Zhang, X. Qu, T. Nonferr, Metal. Soc. 25, 129–136 (2015)

    Google Scholar 

  82. Y.Y. Cao, N. Takeyasu, T. Tanaka, X.M. Duan, S. Kawata, Small 5, 1144–1148 (2009)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 12002223); the Graduate Scientific Research and Innovation Foundation of Chongqing (No. CYB21027).

Author information

Authors and Affiliations

Authors

Contributions

PD: Methodology, Formal analysis, Writing–original draft. XZ: Funding acquisition, Formal analysis. YM: Writing—review & editing. YH: Visualization. Y: Validation. WL: Supervision, Funding acquisition. ZZ: Supervision.

Corresponding author

Correspondence to Weiguo Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, P., Zhang, X., Ma, Y. et al. Modeling Investigations and Analysis of Temperature Dependent Yield Strength of Oxide Dispersion Strengthened Superalloys Considering the Effect of Dislocations Climbing and Particles Growth. Met. Mater. Int. 30, 1041–1054 (2024). https://doi.org/10.1007/s12540-023-01555-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01555-y

Keywords

Navigation