Skip to main content
Log in

Effect of SiC volume fraction and particle size on the fatigue resistance of a 2080 Al/SiC p composite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of SiC volume fraction and particle size on the fatigue behavior of 2080 Al was investigated. Matrix microstructure in the composite and the unreinforced alloy was held relatively constant by the introduction of a deformation stage prior to aging. It was found that increasing volume fraction and decreasing particle size resulted in an increase in fatigue resistance. Mechanisms responsible for this behavior are described in terms of load transfer from the matrix to the high stiffness reinforcement, increasing obstacles for dislocation motion in the form of S’ precipitates, and the decrease in strain localization with decreasing reinforcement interparticle spacing as a result of reduced particle size. Microplasticity was also observed in the composite, in the form of stress-strain hysteresis loops, and is related to stress concentrations at the poles of the reinforcement. Finally, intermetallic inclusions in the matrix acted as fatigue crack initiation sites. The effect of inclusion size and location on fatigue life of the composites is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.W. Clyne and P.J. Withers: An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge, United Kingdom, 1993, p. 1.

    Google Scholar 

  2. K.K. Chawla: Composite Materials—Science and Engineering, Springer-Verlag, New York, NY, 1987, p. 102.

    Google Scholar 

  3. M.J. Kozack, S.C. Khatri, J.E. Allison, and M.G. Bader: in Fundamentals of Metal Matrix Composites, S. Suresh, A. Mortensen, and A. Needleman, eds., Butterworth-Heinemann, Stoneham, MA, 1993, p. 297.

    Google Scholar 

  4. J.E. Allison and J.W. Jones: in Fundamentals of Metal Matrix Composites, S. Suresh, A. Mortensen, and A. Needleman, eds., Butterworth-Heinemann, Stoneham, MA, 1993, p. 269.

    Google Scholar 

  5. J.E. Allison, L.C. Davis, and J.W. Jones: in Composites Engineering Handbook, P.K. Mallick, ed., Marcel Dekker, New York, NY, 1997, p. 941.

    Google Scholar 

  6. K.K. Chawla and M. Metzger: J. Mater. Sci., 1972, vol. 7, p. 34.

    Article  CAS  Google Scholar 

  7. M. Vogelsang, R.J. Arsenault, and R.M. Fisher: Metall. Trans. A, 1986, vol. 17A, pp. 379–89.

    CAS  Google Scholar 

  8. S. Suresh and K.K. Chawla: in Fundamentals of Metal Matrix Composites, S. Suresh, A. Mortensen, and A. Needleman, eds., Butterworth-Heinemann, Stoneham, MA, 1993, p. 119.

    Google Scholar 

  9. V.C. Nardone and K.M. Prewo: Scripta Metall., 1986, vol. 20, p. 43.

    Article  CAS  Google Scholar 

  10. V.C. Nardone: Scripta Metall., 1987, 21, 1313.

    Article  CAS  Google Scholar 

  11. V.C. Nardone and K.M. Prewo: Scripta Metall., 1989, 23, 291.

    Article  CAS  Google Scholar 

  12. R.J. Arsenault and S.B. Wu: Scripta Metall., 1988, 22, 767.

    Article  CAS  Google Scholar 

  13. R.J. Arsenault: Scripta Metall., 1989, 23, 293.

    Article  CAS  Google Scholar 

  14. J. Hall, J.W. Jones, and A. Sachdev: Mater. Sci. Eng. A, 1994, A183, 69.

    Google Scholar 

  15. N.L. Han, Z.G. Wang, and L. Sun: Scripta Metall. Mater., 1995, 33, 781.

    Article  CAS  Google Scholar 

  16. A.R. Vaidya and J.J. Lewandowski: Mater. Sci. Eng. A, 1996, A220, 85.

    CAS  Google Scholar 

  17. U. Habel, C.M. Christenson, J.W. Jones, and J.E. Allison: Proc. 10th Int. Conf. Composite Materials, A. Poursartip and K. Street, eds., Woodhead Pub. Ltd., Cambridge, United Kingdom, 1995, vol. 2, p. 397.

    Google Scholar 

  18. J.J. Bonnen, J.E. Allison, and J.W. Jones: Metall. Trans. A, 1991, 22A, 1007–19.

    CAS  Google Scholar 

  19. J.K. Shang and R.O. Ritchie: in Metal Matrix Composites, R.J. Arsenault and R.K. Everett, eds., Academic Press, Boston, MA, 1989, pp. 255.

    Google Scholar 

  20. T. Klimowicz: Fatigue Data Handbook, DURALCAN USA, San Diego, CA, 1992.

    Google Scholar 

  21. G.M. Vyletel, D.C. VanAken, and J.E. Allison: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 3155–62.

    Google Scholar 

  22. S. Holcomb: Master’s Thesis, University of California, Los Angeles, CA, 1992.

    Google Scholar 

  23. D.J. Lloyd: Int. Mater. Rev., 1994, vol. 39, p. 1.

    CAS  Google Scholar 

  24. M.J. Couper and K. Xia: in Metal Matrix Composites—Processing, Microstructure and Properties, N. Hansen, D.J. Jensen, T. Leffers, H. Lilholt, T. Lorentzen, A.S. Pedersen, O.B. Pedersen, and B. Ralph, eds., Riso National Laboratory, Roskilde, Denmark, 1991, p. 291.

    Google Scholar 

  25. C. Li and F. Ellyin: Mater. Sci. Eng. A, 1996, vol. A214, p. 115.

    CAS  Google Scholar 

  26. M. Levin and B. Karlsson: Int. J. Fatigue, 1993, vol. 15, p. 377.

    Article  CAS  Google Scholar 

  27. E.Y. Chen, L. Lawson, and M. Meshii: Mater. Sci. Eng. A, 1995, vol. A200, p. 192.

    CAS  Google Scholar 

  28. D.A. Lukasek: Ph.D. Dissertation, Pennsylvania State University, University Park, PA, 1993.

    Google Scholar 

  29. J.L. Cook and W.R. Mohn: Engineered Materials Handbook, ASM INTERNATIONAL, Materials Park, OH, 1987, vol. 1, p. 896.

    Google Scholar 

  30. G.J. Hildeman and M.J. Koczak: in Treatise on Materials Science and Technology, A.K. Vasudevan and R.D. Doherty, eds., Academic Press, Boston, MA, 1989, vol. 34, p. 323.

    Google Scholar 

  31. H.J. Rack: in Processing and Properties of Powder Metallurgy Composites, P. Kumar, K. Vedula, and A. Ritter, eds., TMS, Warrendale, PA, 1988, p. 155.

    Google Scholar 

  32. P.E. Krajewski, J.E. Allison, and J.W. Jones: Metall. Mater. Trans. A, 1993, vol. 24A, p. 2731.

    CAS  Google Scholar 

  33. I.J. Polmear: Light Alloys, Edward Arnold, London, 1989, p. 32.

    Google Scholar 

  34. R.N. Wilson and P.G. Partidge: Acta Metall., 1965, vol. 13, p. 1321.

    Article  CAS  Google Scholar 

  35. E.A. Starke, Jr., T.H. Sanders, and I.G. Palmer: J. Met., 1918, vol. 8, p. 24.

    Google Scholar 

  36. T. Chrisman, A. Needleman, and S. Suresh: Acta Metall., 1989, vol. 37, p. 3029.

    Article  Google Scholar 

  37. S.V. Kamat, J.P. Hirth, and R. Mehrabian: Acta Metall., 1989, vol. 37, p. 2395.

    Article  CAS  Google Scholar 

  38. C.Y. Barlow: in Metal Matrix Composites—Processing, Microstructure and Properties, N. Hansen, D.J. Jensen, T. Leffers, H. Lilholt, T. Lorentzen, A.S. Pedersen, O.B. Pedersen, and B. Ralph, eds., Riso National Laboratory, Roskilde, Denmark, 1991, p. 1.

    Google Scholar 

  39. J. Llorca, A. Needleman, and S. Suresh: Acta Metall. Mater., 1991, vol. 39, p. 2317.

    Article  CAS  Google Scholar 

  40. R. Chang, W.L. Morris, and O. Buck: Scripta Mater., 1979, vol. 13, p. 191.

    Article  Google Scholar 

  41. D.R. Williams and M.E. Fine: Proc. Int. Conf. on Composite Materials—IV, W.C. Harrigan, J. Strife, and A.K. Dhingra, eds., TMS, Warrendale, PA, 1985, p. 639.

    Google Scholar 

  42. J.D. Eshelby: Proc. R. Soc., 1957, vol. A241, p. 376.

    Google Scholar 

  43. L.C. Davis: Metall. Trans. A, 1991, vol. 22A, p. 3065–67.

    CAS  Google Scholar 

  44. J.E. Allison, L.C. Davis, and J.W. Jones: Proc. 10th Int. Conf. Composite Materials, A. Poursartip and K. Street, eds., Woodhead Pub. Ltd., Cambridge, United Kingdom, 1995, vol. 2, p. 345.

    Google Scholar 

  45. B.A. Parker: in Treatise on Materials Science and Technology, A.K. Vasudevan and R.D. Doherty, eds., Academic Press, Boston, MA, 1989, vol. 31, p. 539.

    Google Scholar 

  46. B. Johannesson, S.L. Ogin, and P. Tsakiropoulos: in Metal Matrix Composites—Processing, Microstructure and Properties, N. Hansen et al., eds., Riso National Laboratory, Roskilde, Denmark, 1991, p. 411.

    Google Scholar 

  47. M.A. Meyers and K.K. Chawla: Mechanical Behavior of Materials, Prentice-Hall, Upper Saddle River, NJ, 1999, p. 493.

    Google Scholar 

  48. G. Lutjering and S. Weissman: Acta Metall., 1970, vol. 18, p. 785.

    Article  Google Scholar 

  49. K.C. Prince and J.W. Martin: Acta Metall., 1979, vol. 27, p. 1401.

    Article  CAS  Google Scholar 

  50. L.C. Davis and J.E. Allison: Ford Motor Company, Dearborn, MI, unpublished research, 1998.

  51. S.F. Corbin and D.S. Wilkinson: Acta Metall. Mater., 1994, vol. 42, p. 1319.

    Article  CAS  Google Scholar 

  52. N. Chawla, C. Andres, J.W. Jones, and J.E. Allison: Scripta Mater., 1998, vol. 38, p. 1596.

    Google Scholar 

  53. J.N. Goodier: J. Appl. Mech., 1933, vols. 55–57, p. 39.

    Google Scholar 

  54. L.C. Davis and J.E. Allison: Metall. Trans. A, 1993, vol. 24A, p. 2487–97.

    CAS  Google Scholar 

  55. Y. Shen, M. Finot, A. Needleman, and S. Suresh: Acta Metall. Mater., 1995, vol. 43, p. 1701.

    Article  CAS  Google Scholar 

  56. S.G. Song, N. Shi, G.T. Gray, and J.A. Roberts: Metall. Mater. Trans. A, 1996, vol. 27A, p. 3739–46.

    Article  CAS  Google Scholar 

  57. D. Brooksband and K.W. Andrews: J. Iron Steel Inst., 1969, vol. 207, p. 474.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chawla, N., Jones, J.W., Andres, C. et al. Effect of SiC volume fraction and particle size on the fatigue resistance of a 2080 Al/SiC p composite. Metall Mater Trans A 29, 2843–2854 (1998). https://doi.org/10.1007/s11661-998-0325-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0325-5

Keywords

Navigation