Skip to main content
Log in

Prediction models for the yield strength of particle-reinforced unimodal pure magnesium (Mg) metal matrix nanocomposites (MMNCs)

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Particle-reinforced metal matrix nanocomposites (MMNCs) have been lauded for their potentially superior mechanical properties such as modulus, yield strength, and ultimate tensile strength. Though these materials have been synthesized using several modern solid- or liquid-phase processes, the relationships between material types, contents, processing conditions, and the resultant mechanical properties are not well understood. In this paper, we examine the yield strength of particle-reinforced MMNCs by considering individual strengthening mechanism candidates and yield strength prediction models. We first introduce several strengthening mechanisms that can account for increase in the yield strength in MMNC materials, and address the features of currently available yield strength superposition methods. We then apply these prediction models to the existing dataset of magnesium MMNCs. Through a series of quantitative analyses, it is demonstrated that grain refinement plays a significant role in determining the overall yield strength of most of the MMNCs developed to date. Also, it is found that the incorporation of the coefficient of thermal expansion mismatch and modulus mismatch strengthening mechanisms will considerably overestimate the experimental yield strength. Finally, it is shown that work-hardening during post-processing of MMNCs employed by many researchers is in part responsible for improvement to the yield strength of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ye J, Han BQ, Lee Z, Ahn B, Nutt SR, Schoenung JM (2005) Scr Mater 53:481. doi:10.1016/j.scriptamat.2005.05.004

    Article  CAS  Google Scholar 

  2. Tang F, Hagiwara M, Schoenung JM (2005) Scr Mater 53:619. doi:10.1016/j.scriptamat.2005.05.034

    Article  CAS  Google Scholar 

  3. Li Y, Zhao YH, Ortalan V, Liu W, Zhang ZH, Vogt RG, Browning ND, Lavernia EJ, Schoenung JM (2009) Mater Sci Eng A 527:305. doi:10.1016/j.msea.2009.07.067

    Article  Google Scholar 

  4. Li Y, Lin YJ, Xiong YH, Schoenung JM, Lavernia EJ (2011) Scr Mater 64:133. doi:10.1016/j.scriptamat.2010.09.027

    Article  CAS  Google Scholar 

  5. Hassan SF, Gupta M (2004) Mater Sci Technol 20:1383. doi:10.1179/026708304X3980

    Article  CAS  Google Scholar 

  6. Tun KS, Gupta M (2008) J Mater Sci 43:4503. doi:10.1007/s10853-008-2649-3

    Article  CAS  Google Scholar 

  7. Hassan SF, Tan MJ, Gupta M (2008) Mater Sci Eng A 486:56. doi:10.1016/j.msea.2007.08.045

    Article  Google Scholar 

  8. Paramsothy M, Hassan SF, Srikanth N, Gupta M (2009) Mater Sci Eng A 527:162. doi:10.1016/j.msea.2009.07.054

    Article  Google Scholar 

  9. Yang Y, Lan J, Li X (2004) Mater Sci Eng A 380(2004):378. doi:10.1016/j.msea.2004.03.073

    Google Scholar 

  10. Cao G, Kobliska J, Konishi H, Li X (2008) Metall Mater Trans A 39A:880. doi:10.1007/s11661-007-9453-6

    Article  CAS  Google Scholar 

  11. Dutkiewicz J, Litynska L, Maziarz W, Haberko K, Pyda W, Kanciruk A (2009) Cryst Res Technol 44:1163. doi:10.1002/crat.200900455

    Article  CAS  Google Scholar 

  12. Ahn JH, Kim YJ, Chung H (2008) Rev Adv Mater Sci 18:329

    CAS  Google Scholar 

  13. Mohammad Sharifi E, Karimzadeh F, Enayati MH (2011) Mater Des 32:3263. doi:10.1016/j.matdes.2011.02.033

    Article  CAS  Google Scholar 

  14. Mazahery A, Abdizadeh H, Baharvandi HR (2009) Mater Sci Eng A 518:61. doi:10.1016/j.msea.2009.04.014

    Article  Google Scholar 

  15. Yao B, Hofmeister C, Patterson T, Sohn YH, Van den Bergh M, Delahanty T, Cho K (2010) Compos A 41:933. doi:10.1016/j.compositesa.2010.02.013

    Article  Google Scholar 

  16. Schultz BF, Ferguson JB, Rohatgi PK (2011) Mater Sci Eng A 530:87. doi:10.1016/j.msea.2011.09.042

    Article  CAS  Google Scholar 

  17. Ferguson JB, Sheykh-Jaberi F, Kim CS, Rohatgi PK, Cho K (2012) Mater Sci Eng 558:193. doi:10.1016/j.msea.2012.07.111

    Article  CAS  Google Scholar 

  18. Mallick A, Vedantam S, Lu L (2009) Mater Sci Eng A 515:14. doi:10.1016/j.msea.2009.03.002

    Article  Google Scholar 

  19. Wang YN, Huang JC (2007) Mater Trans 48:184. doi:10.2320/matertrans.48.184

    Article  Google Scholar 

  20. Mann G, Griffiths JR, Caceres CH (2004) J Alloys Compd 378:188. doi:10.1016/j.jallcom.2003.12.052

    Article  CAS  Google Scholar 

  21. Ono N, Nowak R, Miura S (2003) Mater Lett 58:39. doi:10.1016/S0167-577X(03)00410-5

    Article  Google Scholar 

  22. Wang HY, Xue ES, Xiao W, Liu Z, Li JB, Jiang QC (2011) Mater Sci Eng A 528:8790. doi:10.1016/j.msea.2011.07.052

    Article  CAS  Google Scholar 

  23. Andersson P, Caceres CH, Koike J (2003) Mater Sci Forum 419–422:123. doi:10.4028/www.scientific.net/MSF.419-422.123

    Article  Google Scholar 

  24. Yuan W, Panigrahi SK, Su JQ, Mishra RS (2011) Scr Mater 65:994. doi:10.1016/j.scriptamat.2011.08.028

    Article  CAS  Google Scholar 

  25. Kim HK (2009) Mater Sci Eng 515:66. doi:10.1016/j.msea.2009.02.039

    Article  Google Scholar 

  26. Afrin N, Chen DL, Cao X, Jahazi M (2008) Mater Sci Eng A 472:179. doi:10.1016/j.msea.2007.03.018

    Article  Google Scholar 

  27. Han BQ, Dunand DC (2000) Mater Sci Eng A 227:297. doi:10.1016/S0921-5093(99)00074-X

    Google Scholar 

  28. Bohlen J, Dobron P, Meza Garcia E, Chmelik F, Lukac P, Letzig D, Kainer KU (2005) Adv Eng Mater 8:422. doi:10.1016/j.msea.2006.02.469

    Article  Google Scholar 

  29. Elsayed A, Kondoh K, Imai H, Umeda J (2010) Mater Des 31:2444. doi:10.1016/j.matdes.2009.11.054

    Article  CAS  Google Scholar 

  30. Hagihara K, Kinoshita A, Sugino Y, Yamasaki M, Kawamura Y, Yasuda HY, Umakoshi Y (2010) Acta Mater 58:6282. doi:10.1016/j.actamat.2010.07.050

    Article  CAS  Google Scholar 

  31. Zener C, quoted by Smith CS (1948) Trans AIME 175:15

  32. Szaraz Z, Trojanova Z, Cabbibo M, Evangelista E (2007) Mater Sci Eng A 462:225. doi:10.1016/j.msea.2006.01.182

    Article  Google Scholar 

  33. Habibnejad-Korayem M, Mahmudi R, Poole WJ (2009) Mater Sci Eng A 519:198. doi:10.1016/j.msea.2009.05.001

    Article  Google Scholar 

  34. Zhang Z, Yu H, Wang S, Wang H, Min G (2010) J Mater Sci Technol 26:151. doi:10.1016/S1005-0302(10)60025-4

    Article  Google Scholar 

  35. Nguyen QB, Gupta M (2008) Compos Sci Technol 68:2185. doi:10.1016/j.compscitech.2008.04.020

    Article  CAS  Google Scholar 

  36. Miller WS, Humphreys FJ (1991) Scr Metall 25:33. doi:10.1016/0956-716X(91)90349-6

    Article  CAS  Google Scholar 

  37. Ashby MF (1968) The theory of the critical shear stress and work hardening of dispersion-hardened crystals. In: Proceeding of second Bolton landing conference on oxide dispersion strengthening. Gordon and Breach, Science Publishers, Inc., New York, p 143

  38. Sun Y, Choi H, Konishi H, Pikhovich V, Hathaway R, Chen L, Li X (2012) Mater Sci Eng A 546:284. doi:10.1016/j.msea.2012.03.070

    Article  CAS  Google Scholar 

  39. Goh CS, Wei J, Lee LC, Gupta M (2007) Acta Mater 55:5115. doi:10.1016/j.actamat.2007.05.032032

    Article  CAS  Google Scholar 

  40. Robson JD, Stanford N, Barnett MR (2010) Scr Mater 63:23. doi:10.1016/j.scriptamat.2010.06.026

    Article  Google Scholar 

  41. Rosalie JM, Somekawa H, Singh A, Mukai T (2012) Mater Sci Eng A 539:230. doi:10.1016/j.msea.2012.01.087

    Article  CAS  Google Scholar 

  42. Zeng X, Zou H, Zhai C, Ding W (2006) Mater Sci Eng A 424:40. doi:10.1016/j.msea.2006.02.021

    Article  Google Scholar 

  43. Ferguson JB, Lopez H, Kongshaug D, Schultz B, Rohatgi P (2012) Metall Mater Trans A 43:2110. doi:10.1007/s11661-011-1029-9

    Article  CAS  Google Scholar 

  44. Dai LH, Ling Z, Bai YL (2001) Compos Sci Technol 61:1057. doi:10.1016/S0266-3538(00)00235-9

    Article  CAS  Google Scholar 

  45. Vogt R, Zhang Z, Li Y, Bonds M, Browning ND, Lavernia EJ, Schoenung JM (2009) Scr Mater 61:1052. doi:10.1016/j.scriptamat.2009.08.025

    Article  CAS  Google Scholar 

  46. Redsten AM, Klier EM, Brown AM, Dunand DC (1995) Mater Sci Eng A 201:88. doi:10.1016/0921-5093(94)09741-0

    Article  Google Scholar 

  47. Nardone VC (1987) Scr Metall 21:1313. doi:10.1016/0036-9748(87)90105-0

    Article  CAS  Google Scholar 

  48. Nardone VC, Prewo KM (1986) Scr Metall 20:43. doi:10.1016/0036-9748(86)90210-3

    Article  CAS  Google Scholar 

  49. Ramakrishnan N (1996) Acta Metall 44:69. doi:10.1016/1359-6454(95)00150-9

    CAS  Google Scholar 

  50. Kocks UF, Argon AS, Ashby MF (1975) Prog Mater Sci 19:224

    Google Scholar 

  51. Ebeling R, Ashby MF (1966) Phil Mag 13:805

    Article  CAS  Google Scholar 

  52. Lagerpusch U, Mohles V, Baither D, Anczykowski B, Nembach E (2000) Acta Mater 48:3647. doi:10.1016/S1359-6454(00)00172-5

    Article  CAS  Google Scholar 

  53. Chawla N, Andres C, Jones JW, Allison JE (1998) Metall Mater Trans A29:2843. doi:10.1007/s11661-998-0325-5

    Article  Google Scholar 

  54. Chawla N, Habel U, Shen YL et al (2000) Metall Mater Trans A31:531. doi:10.1007/s11661-000-0288-7

    Article  Google Scholar 

  55. Chawla N, Shen YL (2001) Adv Eng Mater 3:357. doi:10.1002/1527-2648(200106)3:6<357:AID-ADEM357>3.3.CO;2-9

    Article  CAS  Google Scholar 

  56. Arsenault RJ (1984) Mater Sci Eng 64:171. doi:10.1016/0025-5416(84)90101-0

    Article  CAS  Google Scholar 

  57. Clyne TW, Withers PJ (1995) An Introduction to Metal Matrix Composites. Cambridge University Press, Cambridge

    Google Scholar 

  58. Hull D, Clyne TW (1996) An introduction to composite materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  59. Lilholt H (1985) Deformation of multi-phase and particle containing materials. In: Proceedings of the 4th rise international symposium on metallurgy and materials science, Roskilde, Denmark

  60. Sanaty-Zadeh A (2012) Mater Sci Eng A 531:112. doi:10.1016/j.msea.2011.10.043

    Article  CAS  Google Scholar 

  61. Zhang Z, Chen DL (2006) Scr Mater 54:1321. doi:10.1016/j.scriptamat.2005.12.017

    Article  CAS  Google Scholar 

  62. Hassan SF, Gupta M (2006) Compos Struct 72:19. doi:10.1016/j.compstruct.2004.10.008

    Article  Google Scholar 

  63. Hassan SF, Gupta M (2008) J Alloy Compd 457:244. doi:10.1016/j.jallcom.2007.03.058

    Article  CAS  Google Scholar 

  64. Wong WLE, Karthik S, Gupta M (2005) J Mater Sci 40:3395. doi:10.1007/s10853-005-0419-z

    Article  CAS  Google Scholar 

  65. Hassan SF, Gupta M (2005) Mater Sci Eng A 392:163. doi:10.1007/s11661-005-0344-4

    Article  Google Scholar 

  66. Hassan SF, Gupta M (2007) J Alloy Compd 429:176. doi:10.1016/j.jallcom.2006.04.033

    Article  CAS  Google Scholar 

  67. Hassan SF (2011) Mater Sci Eng A 528:5484. doi:10.1016/j.msea.2011.03.063

    Article  CAS  Google Scholar 

  68. Hassan SF (2006) Creation of new magnesium-based material using different types of reinforcements. Dissertation, National University of Singapore

  69. Hassan SF, Gupta M (2006) Mater Sci Eng A 425:22. doi:10.1016/j.msea.2006.03.029

    Article  Google Scholar 

  70. Tun KS, Gupta M (2007) Compos Sci Technol 67:2657. doi:10.1016/j.compscitech.2007.03.006

    Article  CAS  Google Scholar 

  71. Misra A, Hirth JP, Hoagland RG (2005) Acta Mater 53:4817. doi:10.1016/j.actamat.2005.06.025

    Article  CAS  Google Scholar 

  72. Wong WLE, Gupta M (2007) Compos Sci Technol 67:1541. doi:10.1016/j.compscitech.2006.07.015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is primarily supported by the Research Growth Initiative (RGI) Award from University of Wisconsin-Milwaukee (UWM). Partial support from the U.S. Army Research Laboratory (US ARL) under Cooperative Agreement No. W911NF-08-2-0014 is also acknowledged. The views, opinions, and conclusions made in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, CS., Sohn, I., Nezafati, M. et al. Prediction models for the yield strength of particle-reinforced unimodal pure magnesium (Mg) metal matrix nanocomposites (MMNCs). J Mater Sci 48, 4191–4204 (2013). https://doi.org/10.1007/s10853-013-7232-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7232-x

Keywords

Navigation