Skip to main content
Log in

Tensile behavior of directionally solidified Ni3Al intermetallics with different Al contents and solidification rates

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Despite the excellent high temperature mechanical properties of the Ni3Al intermetallic compound, its application is still limited due to its inherently weak grain boundary. Recent research advances have demonstrated that the tensile ductility can be enhanced by controlling the grain morphology using a directional solidification. In this study, a series of directional solidification experiments were carried out to increase both the tensile ductility and the strength of Ni3Al alloys by arraying either the ductile phase of γ-Ni-rich dendrite fibers or the hard phase of β-NiAl dendrite fibers in the γ′-Ni3Al matrix. The dendrite arm spacing could be controlled by the solidification rate, and the volume fraction of the γ or β phase could be altered by the Al content, ranging from 23 at.% to 27 at.%. With an increasing Al content, the γ dendritic microstructure was transformed into the β dendrite in the γ′ matrix, thereby reducing the tensile ductility by increasing the volume fraction of brittle β dendrites in the γ′ matrix. With an increasing solidification rate, the dendrite arm spacing decreased and the tensile properties of Ni3Al varied in a complex manner. The microstructural evolution affecting the tensile behavior of directionally solidified Ni3Al alloy specimens with different solidification rates and Al contents is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. C. Deevi and V. K. Sikka, Intermetallics 4, 357 (1996).

    Article  Google Scholar 

  2. V. K. Sikka, J. T. Mavity, and K. Anderson, Mater. Sci. Eng. A 153, 712 (1992).

    Article  Google Scholar 

  3. E. M. Schulson and Y. Xu, Acta Mater. 45, 3491 (1997).

    Article  Google Scholar 

  4. K. Aoki and O. Izumi, Trans. Jpn. I. Met. 19, 203 (1978).

    Google Scholar 

  5. C. T. Liu and J. O. Stiegler, Science 226, 636 (1984).

    Article  Google Scholar 

  6. C. T. Liu, C. L. White, and J. A. Horton, Acta Metall. 33, 213 (1985).

    Article  Google Scholar 

  7. E. P. George, C. T. Liu, and D. P. Pope, Scripta Metall. Mater. 28, 857 (1993).

    Article  Google Scholar 

  8. D. B. Lee and M. L. Santella, Mater. Sci. Eng. A 374, 217 (2004).

    Article  Google Scholar 

  9. Y. Lu, W. Chen, and Reg Eadie, Intermetallics 12, 1299 (2004).

    Article  Google Scholar 

  10. L. Monika, G. Juliana, and G. Antonin, J. Alloy. Compd. 378, 279 (2004).

    Article  Google Scholar 

  11. Y. F. Han, S. H. Li, Y. Jin, and M. C. Chaturvedi, Mater. Sci. Eng. A 192–193, 899 (1995).

    Article  Google Scholar 

  12. D. E. Meyers and A. J. Ardell, Acta Metall. Mater. 41, 2601 (1993).

    Article  Google Scholar 

  13. J. Q. Su, M. Demura, and T. Hirano, Acta Mater. 51, 2505 (2003).

    Article  Google Scholar 

  14. M. Demura, K. Kishida, Y. Suga, M. Takanashi, and T. Hirano, Scripta Mater. 47, 267 (2002).

    Article  Google Scholar 

  15. H. Borodians’ka, M. Demura, K. Kishida, and T. Hirano, Intermetallics 10, 255 (2002).

    Article  Google Scholar 

  16. M. F. Singleton, J. L. Murray, and P. Nash (ed. T. B. Massalski), Binary Alloy Phase Diagrams, 2nd ed., p.181, ASM International, Metals Park, OH (1990).

  17. J. H. Lee and J. D. Verhoeven, J. Phase. Equilib. 15, 136 (1994).

    Article  Google Scholar 

  18. J. H. Lee and J. D. Verhoeven, J. Cryst. Growth 144, 353 (1994).

    Article  Google Scholar 

  19. S.-M. Seo, H.-W. Jeong, J.-H. Lee, Y.-S. Yoo, and C.-Y. Jo, Korean J. Met. Mater. 49, 882 (2011).

    Article  Google Scholar 

  20. H. Seo, J. Gu, K. Park, Y. Jung, W. Chung, and J. Lee, Met. Mater. Int. 19, 433 (2013).

    Article  Google Scholar 

  21. T. Hirano, T. Mawari, M. Demura, and Y. Isoda, Mater. Sci. Eng. A 239–240, 324 (1997).

    Article  Google Scholar 

  22. T. Mawari and T. Hirano, Intermetallics 3, 23 (1994).

    Article  Google Scholar 

  23. O. Hunziker and W. Kurz, Metall. Mater. Trans. A 30, 3167 (1999).

    Article  Google Scholar 

  24. P. Nash, M. F. Singleton, and J. L. Murray (ed. P. Nash), Phase Diagrams of Binary Nickel Alloys, pp.140–142, ASM International, Metals Park, OH (1986).

  25. M. Hansen and K. Anderko, Constitution of Binary Alloys, 2nd ed., pp.118–121, McGraw-Hill, New York (1958).

    Google Scholar 

  26. W. Kurz and R. Trivedi, Metall. Mater. Trans. A 27, 625 (1996).

    Article  Google Scholar 

  27. C. Y. Cui, J. T. Guo, Y. H. Qi, and H. Q. Ye, Mater. Sci. Eng. A 396, 194 (2005).

    Article  Google Scholar 

  28. O. Hunziker and W. Kurz, Acta Mater. 45, 4981 (1997).

    Article  Google Scholar 

  29. Z. Que, J. Gu, J. Shin, Y. Jung, and J. Lee, Met. Mater. Int. 20, 93 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jehyun Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y., Gu, J., Kim, S. et al. Tensile behavior of directionally solidified Ni3Al intermetallics with different Al contents and solidification rates. Met. Mater. Int. 20, 221–227 (2014). https://doi.org/10.1007/s12540-014-1021-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-1021-1

Key words

Navigation