Skip to main content
Log in

Banded solidification microstructures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Banded microstructures are composed of alternate structures or phases which develop mostly parallel to the transformation front. At low growth velocities, bands of the same microstructure but with different scales form through periodic fluctuations of the solidification system. On the other hand, banding can occur as a transformation microstructure when the growth front becomes unstable to oscillations. This instability is either due, at low velocities, to nucleation of another phase (peritectics) or, at high velocities, to nonequilibrium effects at the interface which lead to periodic changes of the microstructure. In this article, the inherent banded patterns of low velocity peritectic solidification and high velocity nonequilibrium solidification will be presented and their origin will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.T. D’Annessa:Weld J., 1966, vol. 45, p. 569.

    Google Scholar 

  2. J.G. Garland and G.J. Davies:Met. Constr. Br. Weld. J., 1970, vol. 2, p. 171.

    Google Scholar 

  3. W.A. Elliott, F.P. Gagliano, and G. Krauss:Metall. Trans., 1973, vol. 4, pp. 2031–37.

    Article  CAS  Google Scholar 

  4. A. Munitz:Metall. Trans. B, 1985, vol. 16B, pp. 49–61.

    Google Scholar 

  5. W.J. Boettinger:Metall. Trans., 1974, vol. 5, pp. 2023–31.

    Article  CAS  Google Scholar 

  6. A.P. Titchener and J.A. Spittle:Acta Metall, 1975, vol. 23, pp. 497- 502.

    Article  CAS  Google Scholar 

  7. N.J.W. Barker and A. Hellawell:Met. Sci., 1974, vol. 8, p. 353.

    CAS  Google Scholar 

  8. H.D. Brody and S.A. David:Solidification and Casting of Metals, 1977, The Institute of Metals, London, pp. 144–51.

    Google Scholar 

  9. B.C. Fuh: Ph.D. Thesis, Iowa State University, Ames, 1A, 1984.

  10. A. Ostrowski and E.W. Langer:Solidification and Casting of Metals, 1977, The Institute of Metals, London, pp. 139–43.

    Google Scholar 

  11. B.F. Oliver and Bimal Kad:J. Less-Common Met., 1991, vol. 168, pp. 81–90.

    Article  CAS  Google Scholar 

  12. J.H. Lee and J.D. Verhoeven:J. Cryst. Growth, 1994, vol. 144, pp. 353–366.

    Article  CAS  Google Scholar 

  13. D.B. Williams and J.W. Edington: inRapidly Quenched Metals, N.J. Grant and P.C. Giessen, eds., MIT Press, Cambridge, MA, 1976, p. 135.

    Google Scholar 

  14. G.V.S. Sastry and C. Suryanarayana:Mater. Sci. Eng., 1981, vol. 47, p. 193.

    Article  CAS  Google Scholar 

  15. S.K. Pandey, D.K. Gangopadhyay, and C. Suryanarayana:Z Metallkd., 1986, vol. 77, p. 12.

    CAS  Google Scholar 

  16. T. Sato, T.T. Long, H. Tezuka, A. Kamio, and T. Takahashi:J. Jpn. Inst. Met., 1984, vol. 48, p. 748.

    CAS  Google Scholar 

  17. J. Thoma, T.K. Glasgow, S.N. Tewari, J.H. Perepezko, and N. Jayaraman:Mater. Sci. Eng., 1988, vol. 98, p. 89.

    Article  CAS  Google Scholar 

  18. W.J. Boettinger, D. Schechtman, R.J. Schaefer, and F.S. Biancaniello:Metall. Trans. A, 1984, vol. 15A, pp. 55–66.

    CAS  Google Scholar 

  19. D.G. Beck, S.M. Copley, and M. Bass:Metall. Trans. A, 1981, vol. 12A, pp. 1687–92.

    Google Scholar 

  20. D.G. Beck, S.M. Copley, and M. Bass:Metall. Trans. A, 1982, vol. 13A, pp. 1879–89.

    Google Scholar 

  21. M. Zimmermann, M. Carrard, and W. Kurz:Acta Metall, 1989, vol. 37, pp. 3305–13.

    Article  CAS  Google Scholar 

  22. M. Zimmermann, M. Carrard, M. Gremaud, and W. Kurz:Mater. Sci. Eng., 1991, vol. A134, pp. 1278–82.

    CAS  Google Scholar 

  23. M. Gremaud, M. Carrard, and W. Kurz:Acta Metall. Mater., 1991, vol. 39, pp. 1431–43.

    Article  CAS  Google Scholar 

  24. S.C. Gill and W. Kurz:Acta Metall. Mater., 1993, vol. 41, pp. 3563- 3573.

    Article  CAS  Google Scholar 

  25. S.C. Gill and W. Kurz:Acta Metall. Mater., 1995, vol. 43, pp. 139- 151.

    CAS  Google Scholar 

  26. M. Gremaud, M. Carrard, and W. Kurz:Acta Metall. Mater., 1990, vol. 38, pp. 2587–99.

    Article  CAS  Google Scholar 

  27. R. Trivedi:Metall. Trans. A, 1995, vol. 26A, pp. 1583–1590.

    Article  CAS  Google Scholar 

  28. S.R. Coriell and R.F. Sekerka:J. Cryst. Growth, 1983, vol. 61, pp. 499–508.

    Article  CAS  Google Scholar 

  29. B. Caroli, C. Caroli, and B. Roulet:Acta Metall. Mater., 1986, vol. 34, p. 1867.

    Article  CAS  Google Scholar 

  30. G. Merchant and S.H. Davis:Acta Metall. Mater., 1990, vol. 38, p. 2683.

    Article  CAS  Google Scholar 

  31. R.J. Braun and S.H. Davis:J. Cryst. Growth, 1991, vol. 112, pp. 670- 90.

    Article  Google Scholar 

  32. G. Merchant, R.J. Braun, K. Brattkus, and S.H. Davis:SIAM J. Appl. Math., 1992, vol. 52, pp. 1279–1302.

    Article  Google Scholar 

  33. D.A. Huntley and S.H. Davis:Acta Metall. Mater., 1993, vol. 41, pp. 2025–43.

    Article  CAS  Google Scholar 

  34. M. Carrard, M. Gremaud, M. Zimmermann, and W. Kurz:Acta Metall. Mater., 1992, vol. 40, pp. 983–96.

    Article  CAS  Google Scholar 

  35. A. Karma and A. Sarkissian:Phys. Rev. E, 1993, vol. 47, pp. 513- 33.

    Article  CAS  Google Scholar 

  36. A. Sarkissian and A. Karma:Mater. Sci. Eng. A, 1994, vol. 178, p. 153.

    Article  CAS  Google Scholar 

  37. W.A. Tiller:J. Cryst. Growth, 1968, vol. 2, p. 69.

    Article  Google Scholar 

  38. P. Gilgien, A. Zryd, and W. Kurz: Ecole Polytechnique, Lausanne, Switzerland, unpublished research, 1994.

  39. J.W. Elmer, M.J. Aziz, L.E. Tanner, P.M. Smith, and M.A. Wall:Acta Metall. Mater., 1994, vol. 42, pp. 1065–80.

    Article  CAS  Google Scholar 

  40. W.A. Tiller, K.A. Jackson, J.W. Ritter, and B. Chalmers:Acta Metall, 1953, vol. 1, p. 428.

    Article  CAS  Google Scholar 

  41. V.G. Smith, W.A. Tiller, and J.W. Rutter:Can. J. Phys., 1955, vol. 33, pp. 723–45.

    CAS  Google Scholar 

  42. B. Caroli, C. Caroli, and L. Ramirez-Piscina:J. Cryst. Growth, 1993, vol. 132, pp. 377–88.

    Article  CAS  Google Scholar 

  43. E.Y. Yanko, M.I. Yankova, S.M. Copley, and J.A. Todd:Appl. Phys. Lett., 1991, vol. 59, pp. 2106–08.

    Article  Google Scholar 

  44. S.C. Gill, M. Zimmermann, and W. Kurz:Acta Metall. Mater., 1992, vol. 40, pp. 2895–2906.

    Article  CAS  Google Scholar 

  45. W.W. Mullins and R.F. Sekerka:J. Appl. Phys., 1964, vol. 35, p. 444.

    Article  Google Scholar 

  46. W. Kurz, B. Giovanola, and R. Trivedi:Acta Metall. Mater., 1994, vol. 42.

  47. M.J. Aziz:J. Appl. Phys., 1982, vol. 53, p. 1158.

    Article  CAS  Google Scholar 

  48. S.-Z. Lu and J.D. Hunt:J. Cryst. Growth, 1992, vol. 123, p. 17.

    Article  Google Scholar 

  49. J.C. Baker and J.W. Cahn: inSolidification, ASM, Metals Park, OH, 1971, p. 23.

    Google Scholar 

  50. W.J. Boettinger and S.R. Coriell: inScience and Technology of the Undercooled Melt, P.R. Sahm, H. Jones, and CM. Actam, eds., Martinus Nijhoff Publishers, Dordrecht, The Netherlands 1986, p. 81.

    Google Scholar 

  51. W. Kurz and P. Gilgien:Mater. Sci. Eng., 1994, vol. A178, pp. 171- 78.

    Google Scholar 

  52. B. Jönsson:Mater. Sci. Eng., 1991, vol. A133, pp. 827–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made at the “Analysis and Modeling of Solidification” symposium as part of the 1994 fall meeting of TMS in Rosemont, Illinois, October 2–6, 1994, under the auspices of the TMS Solidification Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurz, W., Trivedi, R. Banded solidification microstructures. Metall Mater Trans A 27, 625–634 (1996). https://doi.org/10.1007/BF02648951

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648951

Keywords

Navigation