Skip to main content
Log in

Effect of growth rate on microstructures and microhardness in directionally solidified Ti-47Al-1.0W-0.5Si alloy

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ti-47Al-1.0W-0.5Si (at.%) alloy was directionally solidified in the range of growth rate (V) (V = 3–100 μm/s) at a constant temperature gradient (G = 18 K/mm). It was found that α phase was the primary phase of the alloy. Both primary dendritic arm spacing (λ) and interlamellar spacing (λs) decreased with increase of the growth rate (V) according to the relationship of λ ∝ V−0.356 and λsV−0.49, respectively. The Solidification segregation occurred since the enrichment of the solute element W in primary α phase during solidification. The degree of the segregation increased with the increase of the growth rate (V). The results also revealed that the lamellar orientation was not always perpendicular to the growth direction (GD) because the GD of primary α dendritic deviated from the preferred <0001> direction. The microhardness increased with increasing growth rate (V) according to HV ∝ 289.5 V0.12 because of the microstructure refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. S. Kim, J.K. Hong, Y. Na, J. Yeom, and S.E. Kim: Development of TiAl alloys with excellent mechanical properties and oxidation resistance. Mater. Des. 54, 814–819 (2014).

    Article  CAS  Google Scholar 

  2. H. Clemens and S. Mayer: Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv. Eng. Mater. 15, 191–215 (2013).

    Article  CAS  Google Scholar 

  3. D.R. Johnson, H. Inui, S. Muto, Y. Omiya, and T. Yamanaka: Microstructural development during directional solidification of α-seeded TiAl alloys. Acta Mater. 54, 1077–1085 (2006).

    Article  CAS  Google Scholar 

  4. H. Inui, M.H. Oh, A. Nakamura, M. Yamaguchi: Room-temperature tensile deformation of polysynthetically twinned (PST) crystals of TiAl. Acta Mater. 40, 3095–3140 (1992).

    Article  CAS  Google Scholar 

  5. D.R. Johnson, H. Inui and M. Yamaguch: Directional solidification and microstructural control of the TiAl/Ti3Al lamellar microstructure in TiAl-Si alloys. Acta Mater. 44, 2523–2535 (1996).

    Article  CAS  Google Scholar 

  6. D.R. Johnson, Y. Masuda, H. Inui, M. Yamaguchi: Alignment of the TiAl/Ti3Al lamellar microstructure in TiAl alloys by growth from a seed material. Acta Mater. 45, 2523–2533 (1997).

    Article  CAS  Google Scholar 

  7. S.E. Kim, Y.T. Lee, M.H. Oh, H. Inui, and M. Yamaguchi: Directional solidification of TiAl base alloys using a polycrystalline seed. Mater. Sci. Eng., A 329, 25–30 (2002).

    Article  Google Scholar 

  8. H.N. Lee, D.R. Johnson, H. Inui, M.H. Oh, D.M. Wee, and M. Yamaguchi: A composition window in the TiAl–Mo–Si system suitable for lamellar structure control through seeding and directional solidification. Mater. Sci. Eng., A 329, 19–24 (2002).

    Article  Google Scholar 

  9. I.S. Jung, H.S. Jang, M.H. Oh, J.H. Lee, and D.M. Wee: Microstructure control of TiAl alloys containing β stabilizers by directional solidification. Mater. Sci. Eng., A 329–331, 13–18 (2002).

    Article  Google Scholar 

  10. I. Jung, M. Oh, N. Park, K.S. Kumar, and D. Wee: Lamellar boundary alignment of DS-processed TiAl–W alloys by a solidification procedure. Met. Mater. Int. 13, 455 (2007).

    Article  CAS  Google Scholar 

  11. S. Dong, R. Chen, J. Guo, H. Ding, Y. Su, and H. Fu: Effect of heat treatment on microstructure and mechanical properties of cast and directionally solidified high-Nb contained TiAl-based alloys. J. Mater. Res. 30, 1–12 (2015).

    Google Scholar 

  12. J. Lapin, L. Ondrú, and M. Nazmy: Directional solidification of intermetallic Ti–46Al–2W–0.5Si alloy in alumina moulds. Intermetallics 10, 1019–1031 (2002).

    Article  CAS  Google Scholar 

  13. C. Kenel and C. Leinenbach: Influence of Nb and Mo on microstructure formation of rapidly solidified ternary Ti–Al–(Nb, Mo) alloys. Intermetallics 69, 82–89 (2016).

    Article  CAS  Google Scholar 

  14. D. Hu: Role of boron in TiAl alloy development: A review. Rare Met. 35, 1–14 (2015).

    Article  Google Scholar 

  15. R.M. Imayev, V.M. Imayev, M. Oehring, and F. Appel: Alloy design concepts for refined gamma titanium aluminide based alloys. Intermetallics 15, 451–460 (2007).

    Article  CAS  Google Scholar 

  16. A. Brotzu, F. Felli, and D. Pilone: Effect of alloying elements on the behaviour of TiAl-based alloys. Intermetallics 54, 176–180 (2014).

    Article  CAS  Google Scholar 

  17. W.M. Yin, V. Lupinc, and L. Battezzati: Microstructure study of a γ-TiAl based alloy containing W and Si. Mater. Sci. Eng., A 239–240, 713–721 (1997).

    Article  Google Scholar 

  18. A.M. Hodge, L.M. Hsiung, and T.G. Nieh: Creep of nearly lamellar TiAl alloy containing W. Scr. Mater. 51, 411–415 (2004).

    Article  CAS  Google Scholar 

  19. R. Yu, L.L. He, Z.X. Jin, J.T. Guo, H.Q. Ye, and V. Lupinc: On the orientation relationship between Ti5Si3 precipitates and B2 phase in a Ti–47Al–2W–0.5Si alloy. Scr. Mater. 44, 911–916 (2001).

    Article  CAS  Google Scholar 

  20. J. Fan, X. Li, Y. Su, R. Chen, J. Guo, and H. Fu: Dependency of microstructure parameters and microhardness on the temperature gradient for directionally solidified Ti–49Al alloy. Mater. Chem. Phys. 130, 1232–1238 (2011).

    Article  CAS  Google Scholar 

  21. J. Fan, X. Li, Y. Su, J. Guo, and H. Fu: The microstructure parameters and microhardness of directionally solidified Ti–43Al–3Si alloy. J. Alloys Compd. 506, 593–599 (2010).

    Article  CAS  Google Scholar 

  22. H. Kaya, E. Çadırlı, and M. Gündüz: Directional cellular growth of Al-2 wt% Li bulk samples. Appl. Phys. A 94, 155–165 (2009).

    Article  CAS  Google Scholar 

  23. H. Kaya, M. Gündüz, E. Çadırlı, and N. Maraşlı: Dependency of microindentation hardness on solidification processing parameters and cellular spacing in the directionally solidified Al based alloys. J. Alloys Compd. 478, 281–286 (2009).

    Article  CAS  Google Scholar 

  24. U. Böyük and N. Maraşlı: The microstructure parameters and microhardness of directionally solidified Sn–Ag–Cu eutectic alloy. J. Alloys Compd. 485, 264–269 (2009).

    Article  Google Scholar 

  25. E. Çadırlı, H. Kaya, and M. Gündüz: Effect of growth rates and temperature gradients on the lamellar spacing and the undercooling in the directionally solidified Pb–Cd eutectic alloy. Mater. Res. Bull. 38, 1457–1476 (2003).

    Article  Google Scholar 

  26. U. Böyük, N. Maraşlı, H. Kaya, E. Çadırlı, and K. Keşlioğlu: Directional solidification of Al–Cu–Ag alloy. Appl. Phys. A: Mater. Sci. Process. 95, 923–932 (2009).

    Article  Google Scholar 

  27. H. Zhong, S. Li, H. Kou, and J. Li: The solidification path related columnar-to-equiaxed transition in Ti–Al alloys. Intermetallics 59, 81–86 (2015).

    Article  CAS  Google Scholar 

  28. M. Yamaguchia, D.R. Johnson, H.N. Lee, and H. Inui: Directional solidification of TiAl-base alloys. Intermetallics 8, 511–517 (2000).

    Article  Google Scholar 

  29. J. Lapin and Z. Gabalcová: Solidification behaviour of TiAl-based alloys studied by directional solidification technique. Intermetallics 19, 797–804 (2011).

    Article  CAS  Google Scholar 

  30. J. Fan, X. Li, Y. Su, J. Guo, and H. Fu: Effect of growth rate on microstructure parameters and microhardness in directionally solidified Ti–49Al alloy. Mater. Des. 34, 552–558 (2012).

    Article  CAS  Google Scholar 

  31. X.F. Ding, J.P. Lin, H. Qi, L.Q. Zhang, X.P. Song, and G.L. Chen: Microstructure evolution of directionally solidified Ti–45Al–8.5Nb–(W, B, Y) alloys. J. Alloys Compd. 509, 4041–4046 (2011).

    Article  CAS  Google Scholar 

  32. G.L. Chen, X.J. Xu, Z.K. Teng, Y.L. Wang, and J.P. Lin: Microsegregation in high Nb containing TiAl alloy ingots beyond laboratory scale. Intermetallics 15, 625–631 (2007).

    Article  CAS  Google Scholar 

  33. J. Fan, X. Li, Y. Su, R. Chen, J. Guo, and H. Fu: Directional solidification of Ti–49 at.%Al alloy. Appl. Phys. A: Mater. Sci. Process. 105, 239–248 (2011).

    Article  CAS  Google Scholar 

  34. M.C. Kim, M.H. Oh, J.H. Lee, H. Inui, M. Yamaguchi, and D.M. Wee: Composition and growth rate effects in directionally solidified TiAl alloys. Mater. Sci. Eng., A 239, 570–576 (1997).

    Article  Google Scholar 

  35. T. Haxhimali, A. Karma, F. Gonzales, and M. Rappaz: Orientation selection in dendritic evolution. Nat. Mater. 5, 660–664 (2006).

    Article  CAS  Google Scholar 

  36. J. Lapin: Effect of lamellar structure on microhardness and yield stress of directionally solidified intermetallic Ti–46Al–2W–0.5Si alloy. J. Mater. Sci. Lett. 22, 747–749 (2003).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This project was supported by the National Natural Science Foundation of China (51425402, 51331005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liangshun Luo or Yanqing Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Luo, L., Su, Y. et al. Effect of growth rate on microstructures and microhardness in directionally solidified Ti-47Al-1.0W-0.5Si alloy. Journal of Materials Research 31, 618–626 (2016). https://doi.org/10.1557/jmr.2016.48

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.48

Navigation