Skip to main content
Log in

Multifarious diagnostic possibilities of the S100 protein family: predominantly in pediatrics and neonatology

  • Review Article
  • Published:
World Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Background

Numerous articles related to S100 proteins have been recently published. This review aims to introduce this large protein family and its importance in the diagnostics of many pathological conditions in children and adults.

Data sources

Based on original publications found in database systems, we summarize the current knowledge about the S100 protein group and highlight the most important proteins with focus on pediatric use.

Results

The S100 family is composed of Ca2+ and Zn2+ binding proteins, which are present only in vertebrates. Some of these proteins can be used as diagnostic markers in cardiology (S100A1, S100A12), oncology (S100A2, S100A5, S100A6, S100A14, S100A16, S100P, S100B), neurology (S100B), rheumatology (S100A8/A9, S100A4, S100A6, and S100A12), nephrology and infections (S100A8, S100A9, S100A8/A9, S100A12). The most useful S100 proteins in pediatrics are S100A8, S100A9, heterodimers S100A8/A9, S100B and S100A12.

Conclusions

The S100 family members are promising biomarkers and provide numerous possibilities for implementation into clinical practice to optimize the differential diagnostic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schäfer BW, Heizmann CW. The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci. 1996;21:134–40.

    Article  PubMed  Google Scholar 

  2. Donato R. Intracellular and extracellular roles of S100 proteins. Microsc Res Tech. 2003;60:540–51.

    Article  PubMed  CAS  Google Scholar 

  3. Baudier J, Glasser N, Gerard D. Ions binding to S100 proteins. I. Calcium- and zinc-binding properties of bovine brain S100αα, S100a (αβ), and S100b (ββ) protein: Zn2+ regulates Ca2+ binding on S100b protein. J Biol Chem. 1986;261:8192–203.

    PubMed  CAS  Google Scholar 

  4. Gilston BA, Skaar EP, Chazin WJ. Binding of transition metals to S100 proteins. Sci China Life Sci. 2016;59:792–801.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Moore B. A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun. 1965;19:739–44.

    Article  PubMed  CAS  Google Scholar 

  6. Bresnick AR, Weber DJ, Zimmer DB. S100 proteins in cancer. Nat Rev Cancer. 2015;15:96–109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Li F, Men X, Zhang W. S100 protein in breast tumor. Indian J Cancer. 2014;51:67–71.

    Article  Google Scholar 

  8. Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol. 2001;33:637–68.

    Article  PubMed  CAS  Google Scholar 

  9. Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ, et al. Functions of S100 proteins. Curr Mol Med. 2013;13:24–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Bertheloot D, Latz E. HMGB1, IL-1α, IL-33 and S100 proteins: dual-function alarmins. Cell Mol Immunol. 2016;14:43–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Boteanu RM, Suica VI, Uyy E, Ivan L, Dima SO, Popescu I, et al. Alarmins in chronic noncommunicable diseases: atherosclerosis, diabetes and cancer. J Proteom. 2016;153:21–9.

    Article  CAS  Google Scholar 

  12. Dmytriyeva O, Pankratova O, Owczarek S, Sonn K, Soroka V, Ridley CM, et al. The metastasis-promoting S100A4 protein confers neuroprotection in brain injury. Nat Commun. 2012;3:1197.

    Article  PubMed  CAS  Google Scholar 

  13. Willoughby KA, Kleindienst A, Müller C, Chen T, Muir JK, Ellis EF. S100B protein is released by in vitro trauma and reduces delayed neuronal injury. J Neurochem. 2004;91:1284–91.

    Article  PubMed  CAS  Google Scholar 

  14. Ellis EF, Willoughby KA, Sparks SA, Chen T. S100B protein is released from rat neonatal neurons, astrocytes, and microglia by in vitro trauma and anti-S100 increases trauma-induced delayed neuronal injury and negates the protective effect of exogenous S100B on neurons. J Neurochem. 2007;101:1463–70.

    Article  PubMed  CAS  Google Scholar 

  15. Sorci G, Giovannini G, Riuzzi F, Bonifazi P, Zelante T, Zagarella S, et al. The danger signal S100B integrates pathogen- and danger-sensing pathways to restrain inflammation. PLoS Pathog. 2011;7:e1001315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Zhao J, Endoh I, Hsu K, Tedla N, Endoh Y, Geczy CL. S100A8 modulates mast cell function and suppresses eosinophil migration in acute asthma. Antioxid Redox Signal. 2011;14:1589–600.

    Article  PubMed  CAS  Google Scholar 

  17. Caldwell RL, Opalenik SR, Davidson JM, Caprioli RM, Nanney LB. Tissue profiling MALDI mass spectrometry reveals prominent calcium-binding proteins in the proteome of regenerative MRL mouse wounds. Wound Repair Regen. 2008;16:442–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sroussi HY, Williams RL, Zhang QL, Villines D, Marucha PT. Ala42S100A8 ameliorates psychological-stress impaired cutaneous wound healing. Brain Behav Immun. 2009;23:755–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Anderberg SB, Luther T, Frithiof R. Physiological aspects of Toll-like receptor 4 activation in sepsis-induced acute kidney injury. Acta Physiol (Oxf). 2017;219:573–88.

    Article  PubMed  CAS  Google Scholar 

  20. Farina C, Theil D, Semlinger B, Hohlfeld R, Meinl E. Distinct responses to monocytes to Toll-like receptor ligands and inflammatory cytokines. Int Immunol. 2004;16:799–809.

    Article  PubMed  CAS  Google Scholar 

  21. Hayashi F, Means TK, Luster AD. Toll-like receptors stimulate human neutrophil function. Blood. 2003;102:2660–9.

    Article  PubMed  CAS  Google Scholar 

  22. Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001;1:135–45.

    Article  PubMed  CAS  Google Scholar 

  23. Ramasamy R, Yan SF, Herold K, Clynes R, Schmidt AM. Receptor for advanced glycation end products: fundamental roles in the inflammatory response: winding the way to the pathogenesis of endothelial dysfunction and atherosclerosis. Ann N Y Acadof Sci. 2008;1126:7–13.

    Article  CAS  Google Scholar 

  24. Chavakis T, Bierhaus A, Nawroth PP. RAGE (receptor for advanced glycation end products): a central player in the inflammatory response. Microbes Infect. 2004;6:1219–25.

    Article  PubMed  CAS  Google Scholar 

  25. Sorci G, Riuzzi F, Giambanco I, Donato R. RAGE in tissue homeostasis, repair and regeneration. Biochim Biophys Acta. 2013;1833:101–9.

    Article  PubMed  CAS  Google Scholar 

  26. Riuzzi F, Sorci G, Sagheddu R, Donato R. HMGB1–RAGE regulates muscle satellite cell homeostasis through p38-MAPK- and myogenin-dependent repression of Pax7 transcription. J Cell Sci. 2012;125:1440–54.

    Article  PubMed  CAS  Google Scholar 

  27. Brett W, Mandinova A, Remppis A, Sauder U, Rüter F, Heizmann CW, et al. Translocation of S100A1 calcium binding protein during heart surgery. Biochem Biophys Res Commun. 2001;284:698–703.

    Article  PubMed  CAS  Google Scholar 

  28. Reppel M, Sasse P, Piekorz R, Tang M, Roell W, Duan Y, et al. S100A1 enhances the L-type Ca2+ current in embryonic mouse and neonatal rat ventricular cardiomyocytes. J Biol Chem. 2005;280:36019–28.

    Article  PubMed  CAS  Google Scholar 

  29. Most P, Seifert H, Gao E, Funakoshi H, Völkers M, Heierhorst J, et al. Cardiac S100A1 protein levels determine contractile performance and propensity toward heart failure after myocardial infarction. Circulation. 2006;114:1258–68.

    Article  PubMed  CAS  Google Scholar 

  30. Most P, Pleger ST, Völkers M, Heidt B, Boerries M, Weichenhan D, et al. Cardiac adenoviral S100A1 gene delivery rescues failing myocardium. J Clin Invest. 2004;114:1550–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Averill MM, Kerkhoff C, Bornfeldt KE. S100A8 and S100A9 in cardiovascular biology and disease. Arterioscler Thromb Vasc Biol. 2012;32:223–9.

    Article  PubMed  CAS  Google Scholar 

  32. Donato R, Sorci G, Giambanco I. S100A6 protein: functional roles. Cell Mol Life Sci. 2017;74:2749–60.

    Article  PubMed  CAS  Google Scholar 

  33. Petzold A, Keir G, Lim D, Smith M, Thompson EJ. Cerebrospinal fluid (CSF) and serum S100B: release and wash-out pattern. In Brain Res Bull. 2003;61:281–5.

    Article  CAS  Google Scholar 

  34. Ghanem G, Loir B, Morandini R, Sales F, Lienard D, Eggermont A, et al. On the release and half-life of S100B protein in the peripheral blood of melanoma patients. Int J Cancer. 2001;94:586–90.

    Article  PubMed  CAS  Google Scholar 

  35. Ercole A, Thelin EP, Holst A, Bellander BM, Nelson DW. Kinetic modelling of serum S100b after traumatic brain injury. BMC Neurol. 2016;16:93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Cervellin G, Benatti M, Carbucicchio A, Mattei L, Cerasti D, Aloe R, Lippi G. Serum levels of protein S100B predict intracranial lesions in mild head injury. Clin Biochem. 2012;45:408–11.

    Article  PubMed  CAS  Google Scholar 

  37. Abildtrup M, Kingsley GH, Scott DL. Calprotectin as a biomarker for rheumatoid arthritis: a systematic review. J Rheumatol. 2015;42:760–70.

    Article  PubMed  CAS  Google Scholar 

  38. Tantivitayakul P, Benjachat T, Somparn P, Leelahavanichkul A, Kittikovit V, Hirankarn N, et al. Elevated expressions of myeloid-related proteins-8 and -14 are danger biomarkers for lupus nephritis. Lupus. 2016;25:38–45.

    Article  PubMed  CAS  Google Scholar 

  39. Winningham-Major F, Staecker JL, Barger SW, Coats S, Van Eldik LJ. Neurite extension and neuronal survival activities of recombinant S100 beta proteins that differ in the content and position of cysteine residues. J Cell Biol. 1989;109:3063–71.

    Article  PubMed  CAS  Google Scholar 

  40. Wang H, Zhang L, Zhang IY, Chen X, Da Fonseca A, Wu S, et al. S100B promotes glioma growth through chemoattraction of myeloid-derived macrophages. Clin Cancer Res. 2013;19:3764–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hartman KG, McKnight LE, Liriano MA, Weber DJ. The evolution of S100B inhibitors for the treatment of malignant melanoma. Future Med Chem. 2013;5:97–109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Charmsaz S, Hughes É, Bane FT, Tibbitts P, McIlroy M, Byrne C, et al. S100β as a serum marker in endocrine resistant breast cancer. BMC Med. 2017;15:79. 

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Gagnon A, Kim JH, Schorge JO, Ye B, Liu B, Hasselblatt K, et al. Use of a combination of approaches to identify and validate relevant tumor-associated antigens and their corresponding autoantibodies in ovarian cancer patients. Clin Cancer Res. 2008;14:764–71.

    Article  PubMed  CAS  Google Scholar 

  44. Zhang H, Zhao Q, Chen Y, Wang Y, Gao S, Mao Y, et al. Selective expression of S100A7 in lung squamous cell carcinomas and large cell carcinomas but not in adenocarcinomas and small cell carcinomas. Thorax. 2008;63:352–9.

    Article  PubMed  CAS  Google Scholar 

  45. Liu Y, Tang W, Wang J, Xie L, Li T, He Y, et al. Clinicopathological and prognostic significance of S100A4 overexpression in colorectal cancer: a meta-analysis. Diagn Pathol. 2013;8:181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Zhang L, Jiang H, Xu G, Wen H, Gu B, Liu J, et al. Proteins S100A8 and S100A9 are potential biomarkers for renal cell carcinoma in the early stages: results from a proteomic study integrated with bioinformatics analysis. Mol Med Rep. 2015;11:4093–100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kraakman MJ, Lee MK, Al-Sharea A, Dragoljevic D, Barret TJ, Montenont E. Neutrophil-derived S100 calcium-binding proteins A8/A9 promote reticulated thrombocytosis and atherogenesis in diabetes. J Clin Invest. 2017;127:2133–47.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lee RH, Bergmeier W. Sugar makes neutrophils RAGE: linking diabetes-associated hyperglycemia to thrombocytosis and platelet reactivity. J Clin Invest. 2017;127:2040–3.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Krisp C, Jacobsen F, McKay MJ, Molloy MP, Steinstraesser L, Wolters DA. Proteome analysis reveals antiangiogenic environments in chronic wounds of diabetes mellitustype 2 patients. Proteomics. 2013;13:2670–81.

    Article  PubMed  CAS  Google Scholar 

  50. Dhas B, Bha VT, Gane B. Role of calprotectin in infection and inflammation. Curr Pediatr Res. 2012;16:83–94.

    Google Scholar 

  51. Fagerhol MK, Dale I, Andersson T. Release and quantitation of a leukocyte derived protein (L1). Scan J Haematol. 1980;24:393–8.

    Article  CAS  Google Scholar 

  52. Zwadlo G, Schlegel R, Sorg C. A monoclonal antibody to a subset of human monocytes found only in the peripheral blood and inflammatory tissues. J Immunol. 1986;137:512–8.

    PubMed  CAS  Google Scholar 

  53. Dorin JR, Novak M, Hill RE, Brock DJ, Secher DS, van Heyningen V. A clue to the basic defect in cystic fibrosis from cloning the CF antigen gene. Nature. 1987;326:614–7.

    Article  PubMed  CAS  Google Scholar 

  54. Odink K, Cerletti N, Brüggen J, Clerc RG, Tarcsay L, Zwado G, et al. Two calcium-binding proteins in infiltrate macrophages of rheumatoid arthritis. Nature. 1987;330:80–2.

    Article  PubMed  CAS  Google Scholar 

  55. Andersson KB, Sletten K, Berntzen HB, Dale I, Brandtzaeg P, Jellum E, et al. The leucocyte L1 protein: identity with the cystic fibrosis antigen and the calcium-binding MRP-8 and MRP-14 macrophage components. Scand J Immunol. 1988;28:241–5.

    Article  PubMed  CAS  Google Scholar 

  56. Wilkinson MM, Busuttil A, Hayward C, Brock DJ, Dorin JR, van Heyningen V. Expression pattern of two related cystic fibrosis-associated calcium-binding proteins in normal and abnormal tissues. J Cell Sci. 1988;91:221–30.

    PubMed  CAS  Google Scholar 

  57. Hogg N, Allen C, Edgeworth J. Monoclonal antibody 5.5 reacts with p8,14, a myeloid molecule associated with some vascular endothelium. Eur J Immunol. 1989;19:1053–61.

    Article  PubMed  CAS  Google Scholar 

  58. Tobe T, Murakami K, Tomita M, Nozawa R. Amino acid sequences of 60B8 antigens induced in HL-60 cells by 1,25-dihydroxyvitamin D3. The antigens are identical with macrophage-related protein-14 and -8. Chem Pharm Bull (Tokyo). 1989;37:1576–80.

    Article  CAS  Google Scholar 

  59. Steinbakk M, Naess-Andersen CF, Lingaas E, Dale I, Brandtzaeg P, Fagerhol MK. Antimicrobial actions of calcium binding leucocyte L1 protein, calprotectin. Lancet. 1990;336:763–5.

    Article  PubMed  CAS  Google Scholar 

  60. Schafer BW, Wicki R, Engelkamp D, Mattei MG, Heizmann CW. Isolation of a YAC clone covering a cluster of nine S100 genes on human chromosome 1q21: rationale for a new nomenclature of the S100 calcium-binding protein family. Genomics. 1995;25:638–43.

    Article  PubMed  CAS  Google Scholar 

  61. Stříž I, Trebichavský I. Calprotectin—a pleiotropic molecule in acute and chronic inflammation. Physiol Res. 2004;53:245–53.

    PubMed  Google Scholar 

  62. Hessian PA, Edgeworth J, Hogg N. MRP-8 and MRP-14, two abundant Ca(2+)-binding proteins of neutrophils and monocytes. J Leukocy Biol. 1993;53:197–204.

    Article  CAS  Google Scholar 

  63. Vogl T, Ludwig S, Goebeler M, Strey A, Thorey IS, Reichelt R, et al. MRP8 and MRP14 control microtubule reorganization during transendothelial migration of phagocytes. Blood. 2004;104:4260–8.

    Article  PubMed  CAS  Google Scholar 

  64. Mariani A, Marsili M, Nozzi M, Faricelli R, Chiarelli F, Breda L. Serum calprotectin: review of its usefulness and validity in pediatric rheumatic diseases. Clin Exp Rheumatol. 2015;33:109–14.

    PubMed  Google Scholar 

  65. Krzesiek E. Fecal calprotectin as an activity marker of inflammatory bowel disease in children. Adv Clin Exp Med. 2015;24:815–22.

    Article  PubMed  Google Scholar 

  66. van Rheenen PF, Van de Vijver E, Fidler V. Faecal calprotectin for screening of patients with suspected inflammatory bowel disease: diagnostic meta-analysis. BMJ. 2010;341:c3369.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Van de Vijver E. Schreuder aB, Cnossen WR, Muller Kobold aC, van Rheenen PF. Safely ruling out inflammatory bowel disease in children and teenagers without referral for endoscopy. Arch Dis Child. 2012;97:1014–8.

    Article  PubMed  Google Scholar 

  68. Biskou O, Gardner-Medwin J, Mackinder M, Bertz M, Clark C, Svolos V, et al. Faecal calprotectin in treated and untreated children with coeliac disease and juvenile idiopathic arthritis. J Pediatr Gastroenterol Nutr. 2016;63:112–5.

    Article  CAS  Google Scholar 

  69. Cobanoglu N, Galip N, Dalkan C, Bahceciler NN. Leptin, ghrelin and calprotectin: inflammatory markers in childhood asthma? Multidiscip Respir Med. 2013;8:62.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Golden BE, Clohessy PA, Russell G, Fagerhol MK. Calprotectin as a marker of inflammation in cystic fibrosis. Arch Dis Child. 1996;74:136–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Gray RD, Imrie M, Boyd AC, Porteous D, Innes JA, Greening AP. Sputum and serum calprotectin are useful biomarkers during CF exacerbation. J Cyst Fibros. 2010;9:193–8.

    Article  PubMed  CAS  Google Scholar 

  72. Horsley AR, Davies JC, Gray RD, Macleod KA, Donovan J, Aziz ZA, et al. Changes in physiological, functional and structural markers of cystic fibrosis lung disease with treatment of a pulmonary exacerbation. Thorax. 2013;68:532–9. 

    Article  PubMed  Google Scholar 

  73. Anink J, Van Suijlekom-Smit LW, Otten MH, Prince FH, van Rossum MA, Dolman KM, et al. MRP8/14 serum levels as a predictor of response to starting and stopping anti-TNF treatment in juvenile idiopathic arthritis. Arthritis Res Ther. 2015;17:200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Abe J, Jibiki T, Noma S, Nakajima T, Saito H, Terai M. Gene expression profiling of the effect of high-dose intravenous Ig in patients with Kawasaki disease. J Immunol. 2005;174:5837–45.

    Article  PubMed  CAS  Google Scholar 

  75. Saulsbury FT. Clinical update: Henoch Schonlein Purpura. Lancet. 2007;369:976–8.

    Article  PubMed  Google Scholar 

  76. Chen O, Zhu XB, Ren P, Wang YB, Sun RP, Wei DE. Henoch Schonlein Purpura in children: clinical analysis of 120 cases. Afr Health Sci. 2013;13:94–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  77. Turnier JL, Fall N, Thornton S, Witte D, Bennett MR, Appenzeller S, et al. Urine S100 proteins as potential biomarkers of lupus nephritis activity. Arthritis Res Ther. 2017;19:242. 

    Article  PubMed  PubMed Central  Google Scholar 

  78. Pergialiotis V, Konstantopoulos P, Karampetsou N, Koutaki D, Gkioka E, Perrea DN, et al. Calprotectin levels in necrotizing enterocolitis: a systematic review of the literature. Inflammn Res. 2016;65:847–52.

    Article  CAS  Google Scholar 

  79. Campeotto F, Baldassarre M, Butel MJ, Viallon V, Nganzali F, Soulaines P, et al. Fecal calprotectin: cutoff values for identifying intestinal distress in preterm infants. J Pediatr Gastroenterol Nutr. 2009;48:507–10.

    PubMed  CAS  Google Scholar 

  80. Yang Q, Smith PB, Goldberg RN, Cotton CM. Dynamic change of fecal calprotectin in very low birth weight infants during the first month of life. Neonatology. 2008;94:267–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Josefsson S, Bunn SK, Domellof M. Fecal calprotectin in very low birth weight infants. J Pediatr Gastroenterol Nutr. 2007;44:407–13.

    Article  PubMed  CAS  Google Scholar 

  82. Zoppelli L, Güttel C, Bittrich HJ, Andrée C, Wirth S, Jenke A. Fecal calprotectin concentrations in premature infants have a lower limit and show postnatal and gestational age dependence. Neonatology. 2012;102:68–74.

    Article  PubMed  CAS  Google Scholar 

  83. Pietzsch J, Hoppmann S. Human S100A12: a novel key player in inflammation? Amino Acids. 2009;36:381–9.

    Article  PubMed  CAS  Google Scholar 

  84. Guignard F, Mauel J, Markert M. Identification and characterization of a novel human neutrophil protein related to the S100 family. Biochemical J. 1995;309:395–401.

    Article  CAS  Google Scholar 

  85. Yang Z, Yan WX, Cai H, Tedla N, Armishaw C, Di Girolamo N, et al. S100A12 provokes mast cell activation: a potential amplification pathway in asthma and innate immunity. J Allergy Clin Immunol. 2007;119:106–14.

    Article  PubMed  CAS  Google Scholar 

  86. Yilmaz Y, Yonal O, Eren F, Atug O, Hamzaoglu HO. Serum levels of soluble receptor for advanced glycation endproducts (sRAGE) are higher in ulcerative colitis and correlate with disease activity. J Crohns Colitis. 2011;5:402–6.

    Article  PubMed  CAS  Google Scholar 

  87. Däbritz J, Foell D, Wirth S, Jenke A. Fecal S100A12: identifying intestinal distress in very-low-birth-weight infants. J Pediatr Gastroenterol Nutr. 2013;57:204–10.

    Article  PubMed  Google Scholar 

  88. Däbritz J, Jenke A, Wirth S, Foell D. Fecal phagocyte-specific S100A12 for diagnosing necrotizing enterocolitis. J Pediatr. 2012;161:1059–64.

    Article  PubMed  CAS  Google Scholar 

  89. Terrin G, Passariello A, Manguso F, Salvia G, Rapacciuolo L, Messina F, et al. Serum calprotectin: an antimicrobial peptide as a new marker for the diagnosis of sepsis in very low birth weight newborns. Clin Dev Immunol. 2011;2011:291085.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Abdel-Maaboud M, El-Mazary AA, Osman AM. Serum calprotectin as a diagnostic marker of late onset sepsis in full-term neonates. Egypt J Pediatr Allergy Immunol. 2012;10:19–24.

    Google Scholar 

  91. Decembrino L, De Amici M, Pozzi M, De Silvestri A, Stronati M. Serum calprotectin: a potential biomarker for neonatal sepsis. J Immunol Res. 2015;2015:147973.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Avery GB, Fletcher MA, MacDonald MG. Neonatology: pathophysiology and management of the newborn. Philadelphia: Lippincott; 1994.

    Google Scholar 

  93. Gazzolo D, Di Iorio R, Marioni E, Masetti P, Serra G, Giovannini L, et al. S100B protein is increased in asphyxiated term infants developing intraventricular hemorrhage. Crit Care Med. 2002;30:1356–60.

    Article  PubMed  Google Scholar 

  94. Gazzolo D, Bruschettini M, Lituania M, Serra G, Bonacci W, Michetti F. Increased urinary S100B protein as an early indicator of intraventricular hemorrhage in preterm infants: correlation with the grade of hemorrhage. Clin Chem. 2001;47:1836–8.

    PubMed  CAS  Google Scholar 

  95. Gazzolo D, Marinoni E, Di Iorio R, Bruschettini M, Kornacka M, Lituania M, et al. Urinary S100B protein measurements: a tool for the early identification of hypoxic-ischemic encephalopathy in asphyxiated full-term infants. Crit Care Med. 2004;32:131–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided by Palacky University Olomouc and Ministry of Education, Youth and Sports (grant nos IGA LF UP 2017_13, NPU LO 1304).

Funding

This review was supported by grants NPU LO 1304 and IGA LF UP 2017_13.

Author information

Authors and Affiliations

Authors

Contributions

AM is the principal author of this review. JS was responsible for laboratory part of the article and drafted part of the manuscript from the point of senior researcher’s view. JP searched for publications in database systems and revised the manuscript. JV revised the manuscript and performed the language editing. VM was a supervisor of the project.

Corresponding author

Correspondence to Anna Medkova.

Ethics declarations

Ethical approval

Not required for this review article.

Conflict of interest

All authors declared that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medkova, A., Srovnal, J., Potomkova, J. et al. Multifarious diagnostic possibilities of the S100 protein family: predominantly in pediatrics and neonatology. World J Pediatr 14, 315–321 (2018). https://doi.org/10.1007/s12519-018-0163-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12519-018-0163-5

Keywords

Navigation