Skip to main content
Log in

Fe-Cu (Ag, Au) ore deposits and thermodynamic conditions of the mineralizing hydrothermal fluids of the Chouichia abandoned mine (Northern Tunisia): mineral geothermometers and occurrence evidences of native gold traces, silver and Ag-related minerals

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Cu-Fe ore deposits of the Chouichia abandoned mine are considered among the most complex mineralizations in the northwest Tunisia due, in particular, to their multi-phased poly-metallic character. The deposits fit into the front of the North African thrust domain of Alpine and Atlas orogenies. The mineralization is associated with hydrothermal fluid circulations through the Fej-Et-Tamer deep-rooted accident. Petrography, microanalysis by transmission electron microscopy and scanning electron microprobe allowed to determine the mineral association, the paragenetic phases and to retrace the thermodynamic conditions of the mineralizing fluids. Five mineralizing phases are defined. Native silver, silver minerals (proustite-pyrargyrite, acanthite-argentite), native gold, molybdenite, cinnabar, pyrrhotite, barite and bornite are first observed. Native silver is frequently in association with silver minerals during the later mineralizing phases. Native gold is observed in polished sections in intergranular vug of siliceous facies or as inclusions in quartz. Sulfides and sulfosalts can be enriched in many metallic elements (Bi, Hg, Ag, Au, Sn). The calculated empirical formulae for the Fahlore’s solid solution (tetrahedrite-tennantite) show high Cu values reaching 11.832 apfu for tetrahedrite. According to the literature (Repstock et al. 2016; Shapovalova et al. 2019), such a Cu-excess makes the tetrahedrite from the Chouichia deposits the richest in copper so far cited. The thermodynamic approach using minerals/mineral associations as geothermometers suggests mineralizing fluid temperatures, for the main vein phases, between 200 and 500 °C providing a subsurface heat source. The last mineralizing phase is marked by native silver, silver minerals and by cooling below 178.85 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alouani R (1991) Le Jurassique du Nord de la Tunisie : Marqueurs Géodynamique d’une Marge Transformante : Turbidites, Radiolarites, Plissement et Métamorphisme. Thèse 3éme cycle, Univ. Tunis II, 1991, 202p

  • Amcoff Ö (1988) Experimental replacement of chalcopyrite by bornite: textural and chemical changes during a solid-state process. Mineral Deposita 23:286–292. https://doi.org/10.1007/BF00206409

    Article  Google Scholar 

  • Audédat A, Günther D, Heinrich CA (2000) Causes for largescale metal zonation around mineralized plutons: fluid inclusion LA-ICP-MS evidence from the Mole Granite. Australia Econ Geol 95:1563–1581

    Article  Google Scholar 

  • Ballantine JM, Moore JN (1988) Arsenic geochemistry in geothermal systems. Geochim Cosmochim Acta 52:475–483

    Article  Google Scholar 

  • Barton PB (1973) Solid solutions in the system Cu-Fe-S, Part I: the Cu-S and CuFe-S joins. Econ Geol 68(4):455–465. https://doi.org/10.2113/gsecongeo.68.4.45

    Article  Google Scholar 

  • Ben Aissa R, Ben Aissa W, Ben Haj Amara A, Ben Aissa L, Tlig S (2021) The trace and rare earth element contributions to the understanding of Chouichia iron-copper deposits in Northern Tunisia: metal sources interrelated with magmatism and metamorphism. Arab J Geosci 14:783. https://doi.org/10.1007/s12517-021-07095

    Article  Google Scholar 

  • Ben Aissa L (1996) Projet de recherche des métaux nobles au Nord de la Tunisie : Rapport inédit d’avancement des travaux, Office National des Mines, Tunisia

  • Ben Aissa R (2022) Les minéralisations métallifères au front des nappes du N-W de la Tunisie : Géochimie, pétro-minéralogie et thermodynamique des fluides minéralisateurs. Rapports avec l’environnement géodynamique et origine des métaux. PhD thesis. University of Carthage, Faculty of Sciences of Bizerta, Tunisia

  • Bernardini GP, Tanelli G, Trosti R (1973) Relazioni di fase nel sistema Cu3AsS4 – Cu3SbS4 [Phase relationships in the system Cu3AsS4 – Cu3SbS4]. Rendiconti Della Società Italiana Di Mineralogia e Petrologia 29:281–296

    Google Scholar 

  • Booth-Rea G, Gaidi S, Melki F, Marzougui W, Azañón J, Zargouni F, Galve J, Pérez-Peña J (2018) Late Miocene extensional collapse of northern Tunisia. Tectonics 37:1626–1647. https://doi.org/10.1029/2017TC004846

    Article  Google Scholar 

  • Bouabdellah M, Lebret N, Marcoux E, Sadequi M (2012) Les mines des Beni Bou Ifrour-Ouixane (Rif Oriental): un district ferrugineux néogène de type skarns The Beni Bou Ifrour-Ouixane mines (Eastern Rif), Neogene Skarn Type Iron Deposits. [In:] Chalouan A, Rjimati E, MouttaqiMichard A, Saddiqi O, (Eds.), Nouveaux guides géologiques et miniers du Maroc, Notes de Mémoire de Services Géologiques du Ministère de l’Energie des Hydrocarbures et des Mines du Maroc, 357–362

  • Burollet PF (1991) Structures and tectonics of Tunisia. Tectonophysics 195(2–4):359–369. https://doi.org/10.1016/0040-1951(91)90221-d

    Article  Google Scholar 

  • Cabri LJ, Newville M, Gordon RA, Crozier ED, Sutton SR, McMahon G, Jiang DT (2000) Chemical speciation of gold in arsenopyrite. Can Mineral 38:1265–1281. https://doi.org/10.2113/GSCANMIN.38.5.1265,CorpusID:43701377

    Article  Google Scholar 

  • Camprubl A, Albinson T (2007) Epithermal deposits in Mexico – update of current knowledge, and an empirical reclassification. Geol Soc Am Spec Pap 422:377–411. https://doi.org/10.1130/2007.2422(14)

    Article  Google Scholar 

  • Cifelli F, Caricchi C, Mattei M (2016) Formation of arc-shaped orogenic belts in the Western and Central Mediterranean: a palaeomagnetic review. Geological Society, London, Special Publications 425:37–63. https://doi.org/10.1144/SP425.12

    Article  Google Scholar 

  • Cook NJ, Ciobanu CL, Pring A, Skinner W, Shimizu M, Danyushevsky L, Saini-Eidukat B, Melcher F (2009) Trace and minor elements in sphalerite: a LA-ICPMS study. Geochim Cosmochim Acta 73(16):4761–4791

    Article  Google Scholar 

  • Cook NJ, Ciobanu CL, Danyushevsky LV, Gilbert S (2011) Minor and trace elements in bornite and associated Cu–(Fe)-sulfides: a LA-ICP-MS study. Geochimica and Cosmochimica Acta 75:6473–6496

    Article  Google Scholar 

  • Einaudi MT, Hedenquist JW, Inan EE (2003) Sulfidation state of fluids in active and extinct hydrothermal systems: transitions from porphyry to epithermal environments. In book: Volcanic, geothermal and ore-forming fluids: rulers and witnesses of processes within the EarthEdition: Special Publication 10 Chapter: 15, Society of Economic Geologists and Geochemical Society

  • El Khachani H (1997) Minéralogie, géochimie et conditions de dépôt des gîtes associés au métamorphisme du Nord de la Tunisie. Thèse, Univ, De Tunis II, F.S.T., p 208p

    Google Scholar 

  • Engin TE, Powell AV, Hull S (2011) A high temperature diffraction-resistance study of chalcopyrite, CuFeS2. J Solid State Chem 184(8):2272–2277. https://doi.org/10.1016/j.jssc.2011.06.036

    Article  Google Scholar 

  • Fouquet Y, Pierre C, Etoubleau J, Charlou JL, Ondréas H, Barriga FJAS, Cherkashov GA, Semkova T, Poroshina I, Bohn M, Donval JP, Henry K, Murphy P, Rouxel O (2010) Geodiversity of hydrothermal along the Mid-Atlantic Ridge and ultramafic hosted mineralization: a new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit. Diversity of hydrothermal systems on slow spreading ocean ridges geophysical, monograph series 188, Copyright 2010 by the American Geophysical Union https://doi.org/10.1029/2008GM000746

  • Frenzel N, Mehne M, Bette S, Kureti S (2021) Frisch G (2021) Synthesis and stability of single-phase chalcopyrite-a potential reference material for key investigations in chemistry and metallurgical engineering. Royal Society of Chemistry RSC Adv 11:3153–3161. https://doi.org/10.1039/D0RA09700D

    Article  Google Scholar 

  • Genkin AD, Bortnikov NS (1998) A multidisciplinary study of invisible gold in arsenopyrite from four mesothermal gold deposits in Siberia, Russian Federation. Econ Geol 93(1996):463–457

    Article  Google Scholar 

  • George L, Cook NJ, Ciobanu CL, Wade BP (2015) Trace and minor elements in galena: a reconnaissance LA-ICP-MS study. Am Miner 100:548–569

    Article  Google Scholar 

  • George LL, Cook NJ, Ciobanu CL (2016) Partitioning of trace elements in co-crystallized sphalerite–galena–chalcopyrite hydrothermal ores. Ore Geol Rev 77:97–116

    Article  Google Scholar 

  • Gottis Ch, Sainfeld P (1952) Les gîtes métallifères tunisiens. In: 19th International Geological Congress, Alger, Monographie Région, 2ème Série, 2 (104pp)

  • Hannington MD, Jonasson IR, Herzig PM, Petersen S (1995) Physical and chemical processes of seafloor mineralization at midocean ridges; Seafloor hydrothermal systems: physical, chemical, biological and geological interactions, v. AGU Geophysical Monograph 91:115–157

    Google Scholar 

  • Heinrich CA, Eadington PJ (1986) Thermodynamic predictions of the hydrothermal chemistry of arsenic, and their significance for the paragenetic sequence of some cassiterite-arsenopyrite-base metal sulfide deposits. Econ Geol 81(3):511–529. https://doi.org/10.2113/gsecongeo.81.3.511

    Article  Google Scholar 

  • Johan Z, Marcoux E, Bonnemaison M (1989) Arsénopyrite aurifère : mode de substitution de As dans la structure de FeAsS. Comptes rendus de l’Académie des Sciences de Paris, 308, série II : 185–191

  • Kerr LC, Craw D, Youngson JH (1999) Arsenopyrite compositional variation over variable temperatures of mineralization, Otago Schist, New Zealand. Econ Geol 94:123–128

    Article  Google Scholar 

  • King RJ (2002) Minerals explained 35: Arsenopyrite. Geol Today 18(2002):72–75

    Article  Google Scholar 

  • Kissin SA (1974) Phase relations in a portion of the Fe-S system. Ph.D. thesis, University of Toronto, Canada

  • Kretschmar U, Scott SD (1976) Phase relations involving arsenopyrite in the system Fe-As-S and their application. Can Mineral 14(3):364–386

    Google Scholar 

  • Kruse O (1990) Mössbauer and X-ray study of the effects of vacancy concentration in synthetic hexagonal pyrrhotites. Amer Mineral 75:755–763

    Google Scholar 

  • Kullerud G (1967) Sulfide studies. In: Abelson PH (ed) Researches in Geochemistry, vol 2. John Wiley and Sons Inc, New York, pp 286–321

    Google Scholar 

  • Li Q, Yang B, Zhu J, Jiang H, Li J, Zhang RY, Sand W (2018) Comparative analysis of attachment to chalcopyrite of three mesophilic iron and/or sulfur-oxidizing acidophiles. Minerals 8:406. https://doi.org/10.3390/min8090406

    Article  Google Scholar 

  • Luce FD, Tuttle CL, Skinner BJ (1977) Studies of sulfosalts of copper: V. Phases and phase relations in the system Cu-Sb-As-S between 3508 and 500 8C. Econ Geol 72:271–289

    Article  Google Scholar 

  • Mankov SE, Unihava D, Taborskoy Z (1976) Seligmannite, luzonite et énargite des gisements tertiaires de la Tunisie du Nord. Ore-forming process and mineral deposits. Bulg Acad Sci 5:433–445

    Google Scholar 

  • Maske S, Skinner BJ (1971) Studies of the sulfosalts of copper; I, Phases and phase relations in the system Cu-As-S. Econ Geol 66(6):901–918. https://doi.org/10.2113/gsecongeo.66.6.901

    Article  Google Scholar 

  • Melekestseva IY, Zaykov VV, Nimis P, Tret’Yakov GA, Tessalina SG (2013) Cu–(Ni–Co– Au)-bearing massive sulfide deposits associated with mafic–ultramafic rocks of the Main Urals Fault, South Urals: geological structures, ore textural and mineralogical features, comparison with modern analogs. Ore Geol 52:18–36

    Article  Google Scholar 

  • Mumin AH, Fleet ME, Chryssoulis SL (1994) Gold mineralization in As-rich mesothermal gold ores of the Bogosu-Prestea mining district of the Ashanti Gold Belt, Ghana: remobilization of “invisible” gold. Mineral Deposita 29:445–460. https://doi.org/10.1007/BF00193506

    Article  Google Scholar 

  • Murzin VV, Semenkin VA, Sustavov SG, Krinov DI, Pikulev AI, Milder OB (2003) Non-equivalent positions of Fe atoms in gold bearing arsenopyrite according to Mössbauer spectroscopy. Geokhimiya 8:1–9 (in Russian)

    Google Scholar 

  • ORGM (1996) Rapport final sur les travaux du prospection du Cu (Au-Ag) dans le secteur d’El Khanga 1995–1996, Bibliothèque l’ONIG, Alger

  • Oszczepalski S (1999) Origin of the Kupferschiefer polymetallic mineralization in Poland. Miner Deposita 34:599–613. https://doi.org/10.1007/s001260050222

    Article  Google Scholar 

  • Ouchev A, Kamenov BL, Stefanov ST, Popov A (1973) Recherches de minéralisations plombo-zincifères dans la province « NEOGENE » et de gîtes cuprifères et mercuriels en Tunisie Septentrionale. Convention « Néogène », rapport général de la phase I, Technoexportstroy-Proremi, Bulgarie

  • Pfitzner A, Bernert T (2004) The system Cu3AsS4-Cu3SbS4 and investigations on normal tetrahedral structures. Zeitschrift Fur Kristallographie 219:20–26. https://doi.org/10.1524/zkri.219.1.20.25398

    Article  Google Scholar 

  • Rakovan J, Schoonen MAA, Reeder RJ, Tyrna P, Nelson DO (1995) Epitaxial overgrowths of marcasite on pyrite from the Tunnel and Reservoir Project, Chicago, Illinois, USA: implications for marcasite growth. Geochim Cosmochim Acta 59(2):343–346. https://doi.org/10.1016/0016-7037(94)00320-L

    Article  Google Scholar 

  • Ramdohr P (1980) The ore minerals and their intergrowths. Pergamon, 2 vols, 1205 p

  • Repstock A, Voudouris P, Zeug M, Melfos V, Zhai M, Li H, Kartal T, Matuszczak J (2016) Chemical composition and varieties of fahlore-group minerals from Oligocene mineralization in the Rhodope area, southern Bulgaria and northern Greece. Mineralogy and Petrology, 110, 103–123, Search in Google Scholar

  • Rising BA (1974) Phase relations among pyrite, marcasite, and pyrrhotite below 300°C. Ph.D. dissertation, The Pennsylvania State University

  • Robb L (2005) Introduction to ore-forming processes. Blackwell Publishing, Hoboken

    Google Scholar 

  • Roberts WMB (1963) The low temperature synthesis in aqueous solution of chalcopyrite and bornite. Econ Geol 58(1):52–61. https://doi.org/10.2113/gsecongeo.58.1.52

    Article  Google Scholar 

  • Rouvier H (1977) Géologie de l’extrême Nord tunisien : tectoniques et paléogéographies superposées à l’extrémité orientale de la chaîne Nord Maghrébine [Geology of the Tunisian Far North: tectonics and paleogeography superimposed on the eastern end of the North Maghreb chain].- Thèse Sciences, Univ. Paris VI, 703 p

  • Sack RO, Ebel DS (2006) Thermochemistry of sulfide mineral solutions. Rev Miner Geochem 61:265–364

    Article  Google Scholar 

  • Saunders JA, Hofstra AH, Goldfarb RJ, Reed MH (2014) Geochemistry of hydrothermal gold deposits. Treatise Geochem 383–424. https://doi.org/10.1016/b978-0-08-095975-7.01117-7

  • Sazonov AM, Silyanov SA, Bayukov OA, Yuriy VK, Zvyagina YA, Tishin PA (2019) Composition and ligand microstructure of arsenopyrite from gold ore deposits of the Yenisei Ridge (Eastern Siberia, Russia). Minerals 9(12):737. https://doi.org/10.3390/min9120737

    Article  Google Scholar 

  • Scott SD (1983) Chemical behaviour of sphalerite and arsenopyrite in hydrothermal and metamorphic environments. Mineral Mag 47:427–435

    Article  Google Scholar 

  • Shapovalova M, Tolstykh ND, Bobrova O (2019) Chemical composition and varieties of sulfosalts from gold mineralization in the Gaching ore occurrence (Maletoyvayam ore field). IOP Conference Series: Earth and Environmental Science 319:012019. https://doi.org/10.1088/1755-1315/319/1/012019

    Article  Google Scholar 

  • Sharp ZD, Essene EJ, Kelly WC (1985) A re-examination of the arsenopyrite geothermometer; pressure considerations and applications to natural assemblages. Can Mineral 23(4):517–534

    Google Scholar 

  • Silva JCM, De Abreu HA, Duarte HA (2015) Electronic and structural properties of bulk arsenopyrite and its cleavage surfaces - a DFT study. RSC Adv 5(3):2013–2023

    Article  Google Scholar 

  • Slim-Shimi N, Tlig S (1993) Mixed type sulfide deposits in Northern Tunisia, regenerated in relation to paleogeography and tectonism. Journal of African Earth Sciences (and the Middle East) 16(3):287–307. https://doi.org/10.1016/0899-5362(93)90050-z

    Article  Google Scholar 

  • Slim-Shimi N, Moëlo Y, Tlig S (1996) Sulfide geochemistry and genesis of Chouichia and Ain el Bey copper deposits in northwestern Tunisia. Miner Depos 31:188–200. https://doi.org/10.1007/BF00204026

    Article  Google Scholar 

  • Slim-Shimi N (1992) Minéralogie et paragenèses des gîtes polymétalliques de la zone des nappes en Tunisie. Conditions géochimiques de dépôts et implications génétiques. Unpublished Thèse Sciences, University of Tunis II:268 pp

  • Sugaki A (1951) Thermal studies on the lattice intergrowths of chalcopyrite in bornite from the Akayama Mine. Jpn Sci Rep Tohoku Univ, Ser III 4:19–28

    Google Scholar 

  • Sugaki A, Ueno H, Shimada N, Kitakaze A, Hayashi K, Shima H, Sanjines OV, Saavedra A M (1981) Geological study on poly metallic hydrothermal deposits in the Oruro District Bolivia. Science Reports of the Tohoku University III (XV-1): 1–52

  • Sugaki A, Kitakaze A, Shimizu Y (1982) Phase relations in the Cu3AsS4-Cu3SbS4 join. Science Reports of the Tohoku University 3rd Series, XV, 257–271

  • Sung YH, Brugger J, Ciobanu C, Pring A, Skinner W, Nugus M (2009) Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, Eastern Goldfields Province, Western Australia. Miner Deposita 44:765–791. https://doi.org/10.1007/s00126-009-0244-4

    Article  Google Scholar 

  • Vassileva R, Atanassova R, Kouzmanov K (2014) Tennantite-tetrahedrite series from the Madan Pb-Zn deposits, Central Rhodopes, Bulgaria. Mineral Petrol 108:515–531. https://doi.org/10.1007/s00710-013-0316-0

    Article  Google Scholar 

  • Wang Y, Han X, Petersen S, Jin X, Qiu Z, Zhu J (2014) Mineralogy and geochemistry of hydrothermal precipitates from Kairei hydrothermal field, Central Indian Ridge. Mar Geol 354:69–80

    Article  Google Scholar 

  • Wang X, Liao R, Zhao H, Hong M, Huang X, Peng H, Wen W, Qin W, Qiu G, Huang C, Wang J (2017) Synergetic effect of pyrite on strengthening bornite bioleaching by Leptospirillum ferriphilum. Hydrometallurgy 176:9–16. https://doi.org/10.1016/j.hydromet.2017.12.003

    Article  Google Scholar 

  • Wang L, Qin KZ, Song GX, Li GM (2019) A review of intermediate sulfidation epithermal deposits and subclassification. Ore Geol Rev. https://doi.org/10.1016/j.oregeorev.2019.02.0

    Article  Google Scholar 

  • Wu X, Delbove F, Touray JC (1990) Conditions of formation of gold-bearing arsenopyrite: a comparison of synthetic crystals with samples from Le Châtelet gold deposit, Creuse, France. Mineral Deposita 25:S8–S12. https://doi.org/10.1007/BF00205244

    Article  Google Scholar 

  • Zacharias J, Fryda J, Paterová B, Martin M (2004) Arsenopyrite and As-bearing pyrite from the Roudny deposit, Bohemian Massif. Mineralogical Magazine. Mineral Mag 68:31–46. https://doi.org/10.1180/0026461046810169

    Article  Google Scholar 

  • Zhao J, Brugger J, Ngothai Y, Pring A (2014) The replacement of chalcopyrite by bornite under hydrothermal conditions. Am Mineral 99(11–12):2389–2397. https://doi.org/10.2138/am-2014-4825

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful towards the Physics of Lamellar Materials and Hybrid Nanomaterial Research Unit, University of Carthage, Department of Physics, Faculty of Sciences of Bizerte—Tunisia and the ETAP petroleum company-Tunisia for SEM-EDS. The authors also warmly thank the editor and anonymous reviewers for their valuable and helpful remarks thus improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rania Ben Aissa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Domenico M. Doronzo

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Aissa, R., Ben Aissa, W., Ben Haj Amara, A. et al. Fe-Cu (Ag, Au) ore deposits and thermodynamic conditions of the mineralizing hydrothermal fluids of the Chouichia abandoned mine (Northern Tunisia): mineral geothermometers and occurrence evidences of native gold traces, silver and Ag-related minerals. Arab J Geosci 16, 215 (2023). https://doi.org/10.1007/s12517-023-11300-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-023-11300-9

Keywords

Navigation