Skip to main content
Log in

Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, Eastern Goldfields Province, Western Australia

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

An Erratum to this article was published on 16 July 2009

Abstract

The Sunrise Dam gold mine (11.1 Moz Au) is the largest deposit in the Archaean Laverton Greenstone Belt (Eastern Goldfields Province, Yilgarn Craton, Western Australia). The deposit is characterized by multiple events of fluid flow leading to repeated alteration and mineralization next to a major crustal-scale structure. The Au content of arsenian pyrite and arsenopyrite from four mineralizing stages (D1, D3, D4a, and D4b) and from different structural and lithostratigraphic environments was measured using in situ laser ablation inductively coupled plasma mass spectrometry. Pyrite contains up to 3,067 ppm Au (n = 224), whereas arsenopyrite contains up to 5,767 ppm (n = 19). Gold in arsenopyrite (D4a stage) was coprecipitated and remained as “invisible gold” (nanoparticles and/or lattice-bound) during subsequent deformation events. In contrast, gold in pyrite is present not only as “invisible gold” but also as micrometer-size inclusions of native gold, electrum, and Au(Ag)–tellurides. Pristine D1 and D3 arsenian pyrite contains relatively low Au concentrations (≤26 ppm). The highest Au concentrations occur in D4a arsenian-rich pyrite that has recrystallized from D3 pyrite. Textures show that this recrystallization proceeded via a coupled dissolution–reprecipitation process, and this process may have contributed to upgrading Au grades during D4a. In contrast, Au in D4b pyrite shows grain-scale redistribution of “invisible” gold resulting in the formation of micrometer-scale inclusions of Au minerals. The speciation of Au at Sunrise Dam and the exceptional size of the deposit at province scale result from multiple fluid flow and multiple Au-precipitating mechanisms within a single plumbing system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Arehart GB, Chryssoulis SL, Kesler SE (1993) Gold and arsenic in iron sulfides from sediment-hosted disseminated gold deposits: implication for depositional processes. Econ Geol 88:171–185

    Article  Google Scholar 

  • Ashley PM, Creagh CJ, Ryan CG (2000) Invisible gold in ore and mineral concentrates from the Hillgrove gold-antimony deposits, NSW, Australia. Miner Depos 35:285–301

    Article  Google Scholar 

  • Bateman R, Hagemann S (2002) Gold mineralisation throughout about 45 Ma of Achaean orogenesis: protracted flux of gold in the Golden Mile, Yilgarn Craton, Western Australia. Miner Depos 39:536–559

    Article  Google Scholar 

  • Brown SM, Groves DI, Newton PJN (2002) Geological setting and mineralization model for the Cleo gold deposit, Eastern Goldfields Province, Western Australia. Miner Depos 37:704–721

    Article  Google Scholar 

  • Brown SM, Johnson CA, Watling RJ, Premo WR (2003) Constraints on the composition of ore fluids and implications for mineralising events at the Cleo gold deposit, Eastern Goldfields Province, Western Australia. Aust J Earth Sci 50:19–38

    Article  Google Scholar 

  • Brugger J, Lahaye Y, Costa S, Lambert D, Bateman R (2000) Inhomogeneous distribution of REE in scheelite and dynamics of Archaean hydrothermal systems (Mt. Charlotte and Drysdale gold deposits, Western Australia). Contrib Mineral Petrol 139:251–264

    Article  Google Scholar 

  • Brugger J, Etschmann B, Pownceby M, Liu W, Grundler P, Brewe D (2008) Tracking the chemistry of ancient fluids: oxidation state of europium in hydrothermal scheelite. Chem Geol 257:26–33. doi:10.1016/j.chemgeo.2008.08.003

    Article  Google Scholar 

  • Cabri LJ, Chryssoulis SL, DeVilliers JPR, Laflamme JHG, Buseck PR (1989) The nature of “invisible” gold in arsenopyrite. Can Mineral 27:353–362

    Google Scholar 

  • Cassidy KF, Champion DC, Fletcher IR, Dunphy JM, Black LP, Claoue-Long JC (2002) Geochronological constraints on the Leonora-Laverton transect area, north eastern Yilgarn Craton. In: Cassidy KF (ed) Geology, geochronology and geophysics of the north eastern Yilgarn Craton, with an emphasis on the Leonora-Laverton transect area. Geoscience Australia, Record 2002/18. Geoscience Australia, Symonston, ACT, pp 31–50

    Google Scholar 

  • Cathelineau M, Boiron MC, Holliger P, Marion P, Denis M (1989) Gold in arsenopyrite: crystal chemistry, location and state, physical and chemical conditions of deposition. In: Keays R, Skinner BJ (eds) Source, transport and deposition of metals. Econ Geol Monograph 6. Balkema, Rotterdam, pp 328–341

    Google Scholar 

  • Ciobanu CL, Gabudeanu B, Cook NJ (2004) Neogene ore deposit and metallogeny of the Golden Quadrilateral, south Apuseni Mountains, Romania. Guidebook of the international field workshop of IGCP project 486, Alba Iulia, Romania, 31 Aug–7 Sep

  • Ciobanu CL, Cook NJ, Pring A, Brugger J, Danyushevsky L, Shimizu M (2009) ‘Invisible gold’ in bismuth chalcogenides. Geochim Cosmochim Acta 73:1970–1999. doi:10.1016/j.gca.2009.01.006

    Article  Google Scholar 

  • Coleman LC (1957) Mineralogy of the giant Yellowknife gold mine, Yellowknife, N.W.T. Econ Geol 52:400–425

    Article  Google Scholar 

  • Cook NJ, Chryssoulis SL (1990) Concentration of “Invisible gold” in the common sulfides. Can Mineral 28:1–16

    Google Scholar 

  • Danyushevsky L, Robinson P, McGoldrick P, Large R, Gilbert S (2003) LA-ICPMS of sulphides: evaluation of an XRF glass disc standard for analysis of different sulphide matrixes. Geochim Cosmochim Acta 67:A73

    Google Scholar 

  • Fleet ME, Mumin H (1997) Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis. Am Mineral 82:182–193

    Google Scholar 

  • Fleet ME, Chryssoulis SL, MacLean PJ, Davidson R, Weisener CG (1993) Arsenian pyrite from gold deposits: Au and As distribution investigated by SIMS and EMP, and color staining and surface oxidation by XPS and LIMS. Can Mineral 31:1–17

    Google Scholar 

  • Genkin AD, Bortnikov NS, Cabri LJ, Wagner FE, Stanley CJ, Safonov YG, McMahon G, Friedl J, Kerzin AL, Gamyanin GN (1998) A multidisciplinary study of invisible gold in arsenopyrite from four mesothermal gold deposits in Siberia, Russian Federation. Econ Geol 93:463–487

    Article  Google Scholar 

  • Hallberg JA (1985) Geology and mineral deposits of Leonora-Laverton Area, northeastern Yilgarn Block, Western Australia. Hesperian, Victoria Park, Western Australia, p 140

    Google Scholar 

  • Johan Z, Marcoux E, Bonnemaison M (1989) Arsénopyrite aurifère: mode de subsitution de Au dans la structure de FeAsS. C R Acad Sci (Paris) 308:185–191

    Google Scholar 

  • Larocque ACL, Hodgson CJ, Cabri LJ, Jackman JA (1995) Ion-microprobe analysis of pyrite, chalcopyrite and pyrrhotite from the Mobrun VMS deposit in northwestern Quebec: evidence for metamorphic remobilization of gold. Can Mineral 33:373–388

    Google Scholar 

  • Lentz DR (2002) Sphalerite and arsenopyrite at the Brunswick No. 12 massive sulfide deposit, Bathurst camp, New Brunswick: constraints on P-T evolution. Can Mineral 40:19–31

    Article  Google Scholar 

  • Liu W, Brugger J, Etschamnn B, Testemale D, Hazemann JL (2008) The solubility of nantokite (CuCl(s)) and Cu speciation in low density fluids near the critical isochore: an in-situ XAS study. Geochim Cosmochim Acta 72:4094–4106

    Article  Google Scholar 

  • Maddox LM, Bancroft GM, Scaini MJ, Lorimer JW (1998) Invisible gold: comparison of Au deposition on pyrite and arsenopyrite. Am Mineral 83:1240–1245

    Google Scholar 

  • Mair JL, Ojala VJ, Salier BP, Groves DI, Brown SM (2000) Application of stress mapping in cross-section to understanding ore geometry, predicting ore zones and development of drilling strategies. Aust J Earth Sci 47:895–912

    Article  Google Scholar 

  • McClenaghan SH, Lentz DR, Cabri LJ (2004) Abundance and speciation of gold in massive sulfides of the Bathurst mining camp, New Brunswick, Canada. Can Mineral 42:851–871

    Article  Google Scholar 

  • Mernagh TP, Heinrich CA, Mikucki EJ (2004) Temperature gradients recorded by fluid inclusions and hydrothermal alteration at the Mount Charlotte gold deposit, Kalgoorlie, Australia. Can Mineral 42:1383–1403

    Article  Google Scholar 

  • Mikucki EJ (1998) Hydrothermal transport and depositional processes in Archean lode-gold systems: a review. Ore Geol Rev 13:307–321

    Article  Google Scholar 

  • Morey AA, Tomkins AG, Bierlein FP, Weinberg RF, Davidson GJ (2008) Bimodal distribution of gold in pyrite and arsenopyrite: examples from the Archean Boorara and Bardoc shear systems, Yilgarn Craton, Western Australia. Econ Geol 103:599–614

    Article  Google Scholar 

  • Mumin AH, Fleet ME, Chryssoulis SL (1994) Gold mineralization in As-rich mesothermal gold ores of the Bogosu–Prestea mining district of the Ashanti Gold Belt, Ghana: remobilization of “invisible” gold. Miner Depos 29:445–460

    Article  Google Scholar 

  • Neumayr P, Cabri LJ, Groves DI, Mikucki EJ, Jackman JA (1993) The mineralogical distribution of gold and relative timing of gold mineralization in two Archean settings of high metamorphic grade in Australia. Can Mineral 31:711–725

    Google Scholar 

  • Newton PGN, Tornatora PMA, Smith R, Clifford M (2002) The Cleo-Sunrise Au deposit, Laverton, WA: contrasting structural styles within a thrust duplex. In: Vearncombe S (ed) Applied structural geology for mineral exploration and mining. International Symposium, Abstract Volume. Aust Inst Geosci Bull 36. Australian Institute of Geoscientists, Perth Business Centre, WA, pp 152–155

    Google Scholar 

  • Nugus M, Blenkinsop T, Biggam J, Doyle M (2005a) The role of early-formed structure in lode gold mineralisation: the Sunrise Dam gold Mine, Yilgarn Craton, WA. In: Hancock H et al (eds) Best practice and innovation in global mine geology, 29 May–3 June. Publication 64. Economic Geology Research Unit, School of Earth Sciences, James Cook University, Townsville, Queensland, p 99

    Google Scholar 

  • Nugus M, Blenkinsop T, McLeod T, Doyle M, Kent M (2005b) Structural control of gold mineralisation by reactivation of backthrusts at Sunrise Dam Gold Mine, Yilgarn Craton, WA. In: Hancock H et al (eds) Best practice and innovation in global mine geology, 29 May–3 June. Publication 64. Economic Geology Research Unit, School of Earth Sciences, James Cook University, Townsville, Queensland, p 99

    Google Scholar 

  • Oberthür T, Weiser T, Amanor JA, Chryssoulis SL (1997) Mineralogical siting and distribution of gold in quartz veins and sulfide ores of the Ashanti mine and other deposits in the Ashanti belt of Ghana: genetic implications. Miner Depos 32:2–15

    Article  Google Scholar 

  • Pals DW, Spry PG (2003) Telluride mineralogy of the low-sulfidation epithermal Emperor gold deposit, Vatukoula, Fiji. Mineral Petrol 79:285–307

    Article  Google Scholar 

  • Pals DW, Spry PG, Chryssoulis S (2003) Invisible gold and tellurium in arsenic-rich pyrite from the Emperor Gold Deposit, Fiji: implications for gold distribution and deposition. Econ Geol 98:479–493

    Article  Google Scholar 

  • Pokrovski GS, Kara S, Roux J (2002) Stability and solubility of arsenopyrite, FeAsS, in crustal fluids. Geochim Cosmochim Acta 66:2361–2378

    Article  Google Scholar 

  • Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66:689–708

    Article  Google Scholar 

  • Reich M, Kesler SE, Utsunomiya S, Palenik CS, Chryssoulis S, Ewing RC (2005) Solubility of gold in arsenian pyrite. Geochim Cosmochim Acta 69:2781–2796

    Article  Google Scholar 

  • Salier BP, Groves DI, McNaughton NJ, Fletcher IR (2005) Geochronological and stable isotope evidence for widespread gold mineralization from a deep-seated fluid source at ca. 2.65 Ga in the Laverton Gold Province, Western Australia. Econ Geol 100:1363–1388

    Article  Google Scholar 

  • Shackleton JM, Spry PG, Bateman R (2003) Telluride mineralogy of the Golden Mile deposit, Kalgoorlie, Western Australia. Can Mineral 41:1503–1524

    Article  Google Scholar 

  • Sibson RH, Robert FA, Poulsen KH (1988) High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits. Geology 16:551–555

    Article  Google Scholar 

  • Simon G, Huang H, Penner-Hahn JE, Kesper SE, Kao LS (1999a) Oxidation state of gold and arsenic in gold-bearing arsenian pyrite. Am Mineral 84:1071–1079

    Google Scholar 

  • Simon G, Kesler SE, Chryssoulis S (1999b) Geochemistry and textures of gold-bearing arsenian pyrite, Twin Creeks, Nevada: implications for deposition of gold in Carlin-type deposits. Econ Geol 94:405–422

    Article  Google Scholar 

  • Sung Y-H, Ciobanu CL, Pring A, Brugger J, Skinner W, Cook NJ, Nugus M (2007) Tellurides from Sunrise Dam gold deposit, Yilgarn Craton, Western Australia: a new occurrence of nagyágite. Mineral Petrol 91:249–270

    Article  Google Scholar 

  • Tarnocai CA, Hattori K, Cabri LJ (1997) “Invisible” gold in sulfides from the Campbell mine, Red Lake greenstone belt, Ontario: evidence for mineralization during the peak of metamorphism. Can Mineral 35:805–815

    Google Scholar 

  • Tenailleau C, Pring A, Etschmann B, Brugger J, Grguric B, Putnis A (2006) Transformation of pentlandite to violarite under mild hydrothermal conditions. Am Mineral 91:706–709

    Article  Google Scholar 

  • Thébaud N, Philippot P, Rey P, Brugger J, Van Kranendonk M, Grassineau N (2008) Polyphased fluid–rock interaction in the mid-Archaean and implication of gold pre-concentration: example from the Warrawoona Syncline (WA). Earth Planet Sci Lett 272:639–655

    Article  Google Scholar 

  • Vaughan JP (2004) The process mineralogy of gold: the classification of ore types. JOM 56:46–48

    Article  Google Scholar 

  • Vaughan JP, Kyin A (2004) Refractory gold ores in Archaean greenstones, Western Australia: mineralogy, gold paragenesis, metallurgical characterization and classification. Mineral Mag 68:255–277

    Article  Google Scholar 

  • Wu X, Deldove F (1989) Hydrothermal synthesis of gold-bearing arsenopyrite. Econ Geol 84:2029–2032

    Article  Google Scholar 

  • Xia F, Zhou J, Brugger J, Ngthai Y, O’Neill B, Chen G, Pring A (2008) A novel route to synthesize complex metal sulfides: hydrothermal coupled dissolution-reprecipitation reactions. Chem Mater 20:2809–2817

    Article  Google Scholar 

  • Xia F, Brugger J, Chen G, Ngothai Y, O’Neill B, Punis A, Pring A (2009) Mechanism and kinetics of pseudomorphic mineral replacement reactions: a case study of the replacement of pentlandite by violarite. Geochim Cosmochim Acta 73:1945–1969. doi:10.1016/j.gca.2009.01.007

    Article  Google Scholar 

  • Yang S, Blum N, Rahders E, Zhang Z (1998) The nature of invisible gold in sulfides from the Xianxi Au–Sb–W ore deposits in northwestern Hunan, People’s Republic of China. Can Mineral 36:1361–1372

    Google Scholar 

Download references

Acknowledgments

This study has been financially supported by an Australian Research Council LINKAGE Grant sponsored by AngloGold Ashanti Australia, PIRSA, and the South Australian Museum. YHS wishes to thank Sarah Gilbert and Leonid Danyushevsky at CODES for LA-ICP-MS analysis and data reduction. We are grateful to Nigel J. Cook for his valuable advice and comments on earlier manuscript. The manuscript benefited from insightful comments by Patrick Williams, Hamid Mumin, and David Lentz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Brugger.

Additional information

Editorial handling: P. Williams

An erratum to this article can be found at http://dx.doi.org/10.1007/s00126-009-0251-5

Appendix

Appendix

Table 4 LA-ICP-MS analyses of pyrite in the Sunrise Dam gold deposit

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sung, YH., Brugger, J., Ciobanu, C.L. et al. Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, Eastern Goldfields Province, Western Australia. Miner Deposita 44, 765–791 (2009). https://doi.org/10.1007/s00126-009-0244-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-009-0244-4

Keywords

Navigation