Skip to main content
Log in

Geochemistry, mineral paragenesis and geothermal conditions of oreforming fluids from the Ain El Bey Cu–Fe deposit: potential occurrence of native gold and precious metal traces (North African orogenic belt, Northern Tunisia)

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

The Ain El Bey abandoned mine, in North-West Tunisia, fits into the geodynamic context of the European and African plate boundary. Ore deposit corresponds to veins and breccia of multiphase Cu–Fe-rich mineralization related to various hydrothermal fluid circulations. Petro-mineralogical studies indicate a rich mineral paragenesis with a minimum of seven mineralization phases and, at least, six pyrite generations. As is also the case for galena and native silver, native gold is observed for the first time as inclusion in quartz which opens up, thus, new perspectives for prospecting and evaluating the potential for noble metals associated with the mineralization. Scanning Electron Microscope—Energy Dispersive Spectroscopy and Transmission electron microscopy analyses show, in addition, a large incorporation of trace elements, including Ag and Au, in mineral structures such as fahlores (tetrahedrite-tennantite) and chalcopyrite ones. The mineral/mineral associations, used as geothermometers, gave estimated temperatures for the mineralizing fluids varying from 254 to 330 °C for phase III, from 254 to 350 °C for phase IV, and from 200 to 300 °C for phases V and VI. The seventh and last identified mineralization phase, marked by a deposit of native gold, reflects a drop in the mineralizing fluid’s temperature (< 200 °C) compatible with boiling conditions. Such results open up perspectives for the development of precious metal research and the revaluation of the Cu–Fe ore deposit at the Ain El Bey abandoned mine, as well as at the surrounding areas fitting in the geodynamic framework of the Africa-Europe plate boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All relevant data and material are presented in this published version of the article.

References

  • Albidon Ltd. (2004) Exploration Report. https://www.albidon.com/documents/Nefza2.pdf

  • Audédat A, Günther D, Heinrich CA (2000) Causes for largescale metal zonation around mineralized plutons: fluid inclusion LA-ICP-MS evidence from the Mole Granite. Australia Econ Geol 95:1563–1581

    Article  Google Scholar 

  • Ballantine JM, Moore JN (1988) Arsenic geochemistry in geothermal systems. Geochim Cosmochim Acta 52:475–483

    Article  ADS  Google Scholar 

  • Ben Aissa L (1996) Projet de recherche des métaux nobles au Nord de la Tunisie ; Rapport inédit d’avancement des travaux. Office National des Mines. Tunisia

  • Ben Aissa L (1998) Données sur les minéralisations aurifères et métaux nobles dans le Nord-Ouest de la Tunisie. Rapport inédit. Office National des Mines. Direction de la Recherche Minière

  • Ben Aissa R (2022) Les minéralisations métallifères au front des nappes du N-W de la Tunisie: Géochimie, pétrominéralogie et thermodynamique des fluides minéralisateurs. Rapports avec l’environnement géodynamique et origine des métaux

  • Ben Aissa W, Ben Aissa L (2017) Ore deposits and epithermal evidence associated with intra-magmatic faults at Aïn El Araâr-Oued Belif ring structure (NW of Tunisia). Int J Earth Sci (geol Rundsch) 106:2653–2665. https://doi.org/10.1007/s00531-017-1451-3

    Article  CAS  Google Scholar 

  • Ben Aissa R, Ben Aissa W, Ben Haj Amara A, Ben Aissa L, Tlig S (2021) The trace and rare earth element contributions to the understanding of Chouichia iron-copper deposits in Northern Tunisia: metal sources interrelated with magmatism and metamorphism. Arab J Geosci 14:783. https://doi.org/10.1007/s12517-021-07095

    Article  CAS  Google Scholar 

  • Ben Aissa R, Ben Aissa W, Ben Haj Amara A, Ben Aissa L, Tlig S (2023) Fe–Cu (Ag, Au) ore deposits and thermodynamic conditions of the mineralizing hydrothermal fluids of the Chouichia abandoned mine (Northern Tunisia): mineral geothermometers and occurrence evidence of native gold traces, silver, and Ag-related minerals. Arab J Geosci 16(2023):1–20. https://doi.org/10.1007/s12517-023-11300-9

    Article  CAS  Google Scholar 

  • Ben Haj Ali M, Jedoui Y, Dali T, Ben Salem H, Memmi L (1985) Carte Géologique de la Tunisie au 1/500.000. Office National des Mines, Service Géologique, Tunis (in French)

  • Bernardini GP, Tanelli G, Trosti R (1973) Relazioni di fase nel sistema Cu3AsS4–Cu3SbS4 [Phase relationships in the system Cu3AsS4–Cu3SbS4]. Rendiconti Della Societa Italiana Di Mineralogia e Petrologia 29:281–296

    Google Scholar 

  • Booth-Rea G, Gaidi S, Melki F, Marzougui W, Azanon J, Zargouni F, Glave J, Pérez-Pena J (2018) Late Miocene extentional collapse of northern Tunisia. Tectonics 37:1626–1647

    Article  ADS  Google Scholar 

  • Bouaziz B, Barrier E, Soussi M, Turki MM (2002) Tectonic evolution of the northern african margin in tunisia from paleostress data and sedimentary record. Tectonophysics 357(1–4):227–253. https://doi.org/10.1016/S0040-1951(02)00370-0

    Article  ADS  Google Scholar 

  • Camprubl A, Albinson T (2007) Epithermal deposits in Mexico—Update of current knowledge, and an empirical reclassification. Geol Soc Am Spec p 422

  • Chouinard A, Paquette J, Williams-Jones AE (2005) Crystallographic controls on trace-element incorporation in auriferous pyrite from the Pascua epithermal high-sulfidation deposit, Chile-Argentina. Can Mineral 43:951–963. https://doi.org/10.2113/gscanmin.43.3.951

    Article  CAS  Google Scholar 

  • Cook NJ, Ciobanu CL, Pring A, Skinner W, Shimizu M, Danyushevsky L, Melcher F (2009) Trace and minor elements in sphalerite: a LA-ICPMS study. Geochim Cosmochim Acta 73(16):4761–4791

    Article  ADS  CAS  Google Scholar 

  • Cook NJ, Ciobanu CL, Danyushevsky LV, Gilbert S (2011) Minor and trace elements in bornite and associated Cu–(Fe)-sulfides: a LA-ICP-MS study. Geochim Cosmochim Acta 75:6473–6496

    Article  ADS  CAS  Google Scholar 

  • Deditius A, Utsunomiya S, Renock D, Ewing R, Ramana C, Becker U, Kesler S (2008) A proposed new type of arsenian pyrite: composition, nanostructure and geological significance. Geochim Cosmochim Acta 72:2919–2933. https://doi.org/10.1016/j.gca.2008.03.014

    Article  ADS  CAS  Google Scholar 

  • Einaudi MT, Hedenquist JW, Inan EE (2003) Sulfidation state of fluids in active and extinct hydrothermal systems: transitions from porphyry to epithermal environments. In book: Volcanic, geothermal and ore-forming fluids: Rulers and witnesses of processes within the Earth Edition: Special Publication 10Chapter: 15Publisher: Society of Economic Geologists

  • El Khachani H (1997) Minéralogie, géochimie et conditions de dépôt des gîtes associés au métamorphisme du Nord de la Tunisie. Thèse, Univ. De Tunis II, F.S.T, p. 208

  • Eugster HP (1986) Miner Hot Water: Am Miner 71(1986):655–673

    CAS  Google Scholar 

  • Fleet ME, MacLean PJ, Barbier J (1989) Oscillatory-zoned As- -bearing pyrite from strata-bound and stratiform gold deposits: an indicator of ore fluid evolution. Econ Geol Monograph. 6:356–362

    Google Scholar 

  • Fouquet Y, Cambon P, Etoubleau J, Charlou JL, OndréAs H, Barriga FJ, Rouxel O (2010) Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: a new type of oceanic Cu–Zn–Co–Au volcanogenic massive sulfide deposit. Diver Hydrother Syst Slow Spread Ocean Ridges 188:321–367

    Article  CAS  Google Scholar 

  • Gait RI, Dumka D (1986) Morphology of pyrite from the Nanivisik mine, Baffin island northwest territories. Canad Miner 24(4):685–688

    CAS  Google Scholar 

  • Gena K, Chiba H, Kase K, Nakashima K, Ishiyama D (2013) The tiger sulfide chimney, Yonaguni Knoll IV Hydrothermal Field, Southern Okinawa Trough, Japan: the first reported occurrence of Pt–Cu–Fe-bearing bismuthinite and Sn-bearing chalcopyrite in an active seafloor hydrothermal system. Resour Geol 63:360–370

    Article  CAS  Google Scholar 

  • George L, Cook NJ, Ciobanu CL, Wade BP (2015) Trace and minor elements in galena: a reconnaissance LA-ICP-MS study. Am Miner 100:548–569

    Article  ADS  Google Scholar 

  • George LL, Cook NJ, Ciobanu CL (2016) Partitioning of trace elements in co-crystallized sphalerite–galena–chalcopyrite hydrothermal ores. Ore Geol Rev 77:97–116

    Article  Google Scholar 

  • Gunn G, Ben Aissa L (1995) The potential for gold mineralisation in northern Tunisia : a preliminary assessment.. British geological Survey, Keyworth, Nottingham, U.K. and Office National des Mines, Tunisie

  • Hannington MD (2014) Volcanogenic massive sulphide deposits. Treatise Geochem (2nd Ed) 13:463–488. https://doi.org/10.1016/B978-0-08-095975-7.01120-7.ISBN9780080983004

    Article  CAS  Google Scholar 

  • Heinrich CA (1986) Eadington PJ (1986) Thermodynamic predictions of the hydrothermal chemistry of arsenic, and their significance for the paragenetic sequence of some cassiterite-arsenopyrite-base metal sulfide deposits. Econ Geol 81(3):511–529. https://doi.org/10.2113/gsecongeo.81.3.511

    Article  CAS  Google Scholar 

  • Huston DL, Sie SH, Suter GF, Cooke DR, Both RA (1995) Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part I, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II, Selenium levels in pyrite; comparison with delta 34S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Econ Geol 90:1167–1196

    Article  CAS  Google Scholar 

  • Johan Z (1989) Arsenopyrite aurifère: mode de substitution de Au dans la structure de Fe As S. Compt Rendus De L’académie Des Sci 308:185–191 (in French)

    CAS  Google Scholar 

  • Kase K (1987) (1987) Tin-bearing chalcopyrite from the Izumo Vein, Toyoha Mine, Hokkaido. Japan Canad Miner 25(1):9–13

    CAS  Google Scholar 

  • Kerr LC, Craw D, Youngson JH (1999) Arsenopyrite compositional variation over variable temperatures of mineralization, Otago Schist, New Zealand. Econ Geol 94:123–128

    Article  CAS  Google Scholar 

  • Kretschmar U, Scott SD (1976) Phase relations involving arsenopyrite in the system Fe–As–S and their application. Canad Miner 14(3):364–386

    Google Scholar 

  • Larocque AC, Hodgson CJ, Cabri LJ, Jackman JA (1995) Ion-microprobe analysis of pyrite, chalcopyrite and pyrrhotite from the Mobrun VMS deposit in northwestern Quebec; evidence for metamorphic remobilization of gold. Canad Miner 33(2):373–388

    CAS  Google Scholar 

  • Liu R, Chen G, Yang J (2020) Compositions of Cu–(Fe)-sulfides in the 109 reduced granite-related Cu deposit, Xinjiang, Northwest China: implications to the characteristics of ore-forming fluids. Geofluids. https://doi.org/10.1155/2020/7391369

    Article  Google Scholar 

  • Mankov SE, Unihava D, Taborskoy Z (1976) Seligmannite, luzonite et énargite des gisements tertiaires de la Tunisie du Nord. Ore-forming process and mineral deposits. Bulg Acad Sci 5:433–445

    Google Scholar 

  • Maske S (1971) Skinner BJ (1971) Studies of the sulfosalts of copper; I, phases and phase relations in the system Cu–As–S. Econ Geol 66(6):901–918. https://doi.org/10.2113/gsecongeo.66.6.901

    Article  CAS  Google Scholar 

  • Maslennikov V, Zaykov V, Monacke T, Large R, Danyushevsky L, Maslennikova S, Allen R, Çağatay M, Revan MK (2009) Ore facies of volcanic massive sulfide deposits in Pontides. 2th International Symposium on the Geology of the Black Sea Region, Turkey

  • Melekestseva IY, Zaykov VV, Nimis P, Tret'Yakov GA, Tessalina SG (2013) Cu–(Ni–Co– Au)-bearing massive sulfide deposits associated with mafic–ultramafic rocks of the Main Urals Fault, South Urals: Geological structures, ore textural and mineralogical features, comparison with modern analogs. Ore Geol

  • Moragues L, Ruano P, Azañón J, Garrido CJ, Hidas K, Booth-Rea G (2021) Two Cenozoic extensional phases in Mallorca and their bearing on the geodynamic evolution of the western Mediterranean. Tectonics. https://doi.org/10.1029/2021TC006868

    Article  Google Scholar 

  • Mumin AH, Fleet ME, Chryssoulis SL (1994) Gold mineralization in as-rich mesothermal gold ores of the Bogosu-Prestea mining district of the Ashanti gold belt, Ghana: remobilization of “invisible” gold. Mineral Depos 29:445–460. https://doi.org/10.1007/BF00193506

    Article  ADS  CAS  Google Scholar 

  • Pals DW, Spry PG (2003) Invisible gold and tellurium in arsenic-rich pyrite from the emperor gold deposit, Fiji: implications for gold distribution and deposition. Econ Geol 98(3):479–493. https://doi.org/10.2113/gsecongeo.98.3.479

    Article  CAS  Google Scholar 

  • Ramdohr P (1980) The ore minerals and their intergrowths. Pergamon, 2 vols, p 1205

  • Reich M, Becker U (2006) First-principles calculations of the thermodynamic mixing properties of arsenic incorporation into pyrite and marcasite. Chem Geol 225(3–4):278–290. https://doi.org/10.1016/j.chemgeo.2005.08.02

    Article  ADS  CAS  Google Scholar 

  • Reich M, Kesler SE, Utsunomiya S, Palenik CS, Chryssoulis S, Ewing RC (2005) Solubility of gold in arsenian pyrite. Geochim Cosmochim Acta 69:2781–2796

    Article  ADS  CAS  Google Scholar 

  • Repstock A, Voudouris P, Zeug M, Melfos V, Zhai M, Li H, Kartal T, Matuszczak J (2016) Chemical composition and varieties of fahlore-group minerals from Oligocene mineralization in the Rhodope area, southern Bulgaria and northern Greece. Mineral Petrol 110:103–123

    Article  ADS  CAS  Google Scholar 

  • Revan M, Genç Y, Maslennikov V, Maslennikova S, Large R, Danyushevsky L (2014) Mineralogy and trace-element geochemistry of sulfide minerals in hydrothermal chimneys from the Upper-Cretaceous VMS deposits of the eastern Pontide orogenic belt (NE Turkey). Ore Geol Rev 63:129–149. https://doi.org/10.1016/j.oregeorev.2014.05.006

    Article  Google Scholar 

  • Robb L (2005) Introduction to ore-forming processes (Blackwell Publishing)

  • Roure F, Casero P, Addoum B (2012) Alpine inversion of the North African margin and delamination of its continental lithosphere. Tectonics, 31

  • Rouvier H (1985) Géologie de l’Extrême Nord Tunisien: tectonique et paléogéographie superposées à` l’extrémité orientale de la chaine nord-maghrébine. Editions du Service géologique de Tunisie. Annales Des Mines Et De La Géologie 29:1–427 (in French)

    Google Scholar 

  • Sack RO, Lynch JGV, Foit FF Jr (2003) Fahlore as a petrogenetic indicator: keno Hill Ag–Pb–Zn district, Yukon, Canada. Mineral Mag 67:1023–1038

    Article  CAS  Google Scholar 

  • Sazonov AM, Silyanov SA, Bayukov OA, Yuriy VK, Zvyagina YA (2019) Composition and ligand microstructure of arsenopyrite from gold ore deposits of the Yenisei ridge (Eastern Siberia, Russia). Minerals 9(12):737. https://doi.org/10.3390/min9120737

    Article  ADS  CAS  Google Scholar 

  • Scott SD (1983) Chemical behaviour of sphalerite and arsenopyrite in hydrothermal and metamorphic environments. Mineral Mag 47:427–435

    Article  CAS  Google Scholar 

  • Shalaby I, Stumpfl E, Helmy H, El Mahallawi M, Kamel O (2004) Silver and silver-bearing minerals at the Um Samiuki volcanogenic massive sulphide deposit, Eastern Desert. Egypt Mineralium Depos 39:608–621. https://doi.org/10.1007/s00126-004-0427-y

    Article  ADS  CAS  Google Scholar 

  • Shapovalova M, Tolstykh ND, Bobrova O (2019) Chemical composition and varieties of sulfosalts from gold mineralization in the Gaching ore occurrence (Maletoyvayam ore field). IOP Conf Ser Earth Environ Sci 319:012019. https://doi.org/10.1088/1755-1315/319/1/012019

    Article  Google Scholar 

  • Sharp ZD, Essene EJ, Kelly WC (1985) A re-examination of the arsenopyrite geothermometer; pressure considerations and applications to natural assemblages. Canadian Miner 23(4):517–534

    CAS  Google Scholar 

  • Simon G, Huang H, Penner-Hahn JE, Kesler SE, Kao LS (1999) Oxidation state of gold and arsenic in gold-bearing arsenian pyrite. Am Miner 84(7–8):1071–1079. https://doi.org/10.2138/am-1999-7-809

    Article  ADS  CAS  Google Scholar 

  • Simon G, Kesler S, Essene EJ, Chryssoulis S (2000) Gold in porphyry copper deposits: experimental determination of the distribution of gold in the Cu–Fe–S system at 400–700°C. Econ Geol. https://doi.org/10.2113/gsecongeo.95.2.259

    Article  Google Scholar 

  • Slim-Shimi N, Moëlo Y (1996) Tlig S (1996) Sulfide geochemistry and genesis of Chouichia and Ain el Bey copper deposits in northwestern Tunisia. Mineral Deposita 31:188–200. https://doi.org/10.1007/BF00204026

    Article  ADS  CAS  Google Scholar 

  • Slim-Shimi N, Tlig S (1993) Mixed type sulfide deposits in Northern Tunisia, regenerated in relation to paleogeography and tectonism. J African Earth Sci (middle East) 16(3):287–307. https://doi.org/10.1016/0899-5362(93)90050-z

    Article  ADS  CAS  Google Scholar 

  • Sugaki A (1951) Thermal studies on the Lattice Intergrowths of Chalcopyrite in Bornite from the Akayama Mine. Jpn Sci Rep Tohoku Univ, Ser III 4:19–28

    Google Scholar 

  • Sugaki A, Ueno H, Shimada N, Kitakaze A, Hayashi K, Shima H, Sanjines OV, Saavedra A M (1981) Geological study on poly metallic hydrothermal deposits in the Oruro District Bolivia. Science Reports of the Tohoku University III (XV-1): 1–52

  • Vassileva R, Atanassova R, Kouzmanov K (2014) Tennantite-tetrahedrite series from the Madan Pb-Zn deposits, Central Rhodopes Bulgaria. Mineral Petrol 108:515–531. https://doi.org/10.1007/s00710-013-0316-0

    Article  ADS  CAS  Google Scholar 

  • Wang Y, Han X, Petersen S, Jin X, Qiu Z (2014) Mineralogy and geochemistry of hydrothermal precipitates from Kairei hydrothermal field. Central Indian Ridge. Mar. Geol. 354:69–80

    CAS  Google Scholar 

  • Wang X, Liao R, Zhao H, Hong M, Huang X, Peng H, Wen W, Qin W, Qiu G, Huang C, Wang J (2017) Synergetic effect of pyrite on strengthening bornite bioleaching by Leptospirillum ferriphilum. Hydrometallurgy 176:9–16. https://doi.org/10.1016/j.hydromet.2017.12.003

    Article  CAS  Google Scholar 

  • Wang X, Liao R, Zhao H, Hong M, Huang X, Peng H, Wang J (2018) Synergetic effect of pyrite on strengthening bornite bioleaching by Leptospirillum ferriphilum. Hydrometallurgy 176:9–16. https://doi.org/10.1016/j.hydromet.2017.12.003

    Article  CAS  Google Scholar 

  • Wang L, Qin KZ, Song GX, Li GM (2019) A review of intermediate sulfidation epithermal deposits and subclassification. Ore Geol Rev. https://doi.org/10.1016/j.oregeorev.2019.02.0

    Article  Google Scholar 

  • Zacharias J, Fryda J, Paterová B, Martin M (2004) Arsenopyrite and As-bearing pyrite from the Roudny deposit, Bohemian Massif. Mineralogical Magazine. Mineral Mag 68:31–46. https://doi.org/10.1180/0026461046810169

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the “Laboratoire de Recherche Ressources, Matériaux et Ecosystémes”, University of Carthage 7021 Zarzouna, Bizerte, Tunisia. The authors are very thankful to Editors and Anonymous Reviewers. The Authors are also appreciative and thankful towards the Laboratories of Carthage University-Faculty of Sciences of Bizerte for TEM analyzes and for providing metallogenic microscopes for petrological observations, Mrs Jalila Chetaoui and the Technicians from the National Mining Office (ONF) for polished section establishment and the Technicians from the ETAP petroleum company for SEM-EDX measurements.

Funding

No funding received.

Author information

Authors and Affiliations

Authors

Contributions

RBA and LBA proposed the study subject; RBA WBA prepared and wrote the original draft of the manuscript; LBA and ST Supervised the work progress and revised/discussed the original draft manuscript; LBA and ABHA ensured and assisted in laboratory analyzes. All authors conducted and were involved in field works. All authors have read and approved the published version of the manuscript.

Corresponding author

Correspondence to Rania Ben Aissa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors declare that all the mentioned Ethics rules in the Acta Geochimica web site are followed.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Aissa, R., Ben Aissa, W., Tlig, S. et al. Geochemistry, mineral paragenesis and geothermal conditions of oreforming fluids from the Ain El Bey Cu–Fe deposit: potential occurrence of native gold and precious metal traces (North African orogenic belt, Northern Tunisia). Acta Geochim 43, 366–384 (2024). https://doi.org/10.1007/s11631-023-00657-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-023-00657-z

Keywords

Navigation