Skip to main content
Log in

Mineralogy and physico-chemical properties of Wadi Badaa clays (Cairo-Suez district, Egypt): a prospective resource for the ceramics industry

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Wadi Badaa (WB) Upper Miocene clays, Cairo-Suez district, Egypt, represent materials for the ceramic production. The clay raw materials are composed mainly of smectite and kaolinite with minor quartz, calcite, and rare feldspar. The plasticity indices vary between 24 and 30%, suggesting that these clays are plastic raw materials. IR bands of the investigated clays were observed at 3695, 3619, 1032, 916, 794, 690, 534, 466, and 423 cm−1 for kaolinite; at 3436, 1635, 916, and 466 cm−1 for smectite; and at 1179, 1104, 794, 690, and 466 cm−1 for quartz. The <2 μm particle sizes of samples are relatively abundant in clays (∼33%), which is adequate for uses of the ceramic products because of containing fine particle sizes. The studied WB clays contain 7.95 and 12.35% moisture water and interlayer water, respectively, with a maximum drying shrinkage of 7.87% at room temperature; therefore, the WB clays could be used in the ceramic manufacture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdallah AM, Abdel Hady FM (1966) Geology of Sadat area. Gulf of Suez Egy J Geol 10:1–22

    Google Scholar 

  • Ambikadevi VR, Lalithambika M (2000) Effect of organic acids on ferric iron removal from iron-stained kaolinite. Applied Clay Sci 16:133–145

    Article  Google Scholar 

  • Andráš P, Dirner V, Kharbish S, Krnáč J (2013a) Characteristics of heavy metal distribution at spoil dump-fields of cu-deposit Ľubietová (Slovakia). Carpath J Earth Env Sci 8:87–96

    Google Scholar 

  • Andráš P, Turisová I, Lacková E, Kharbish S, Krnáč J, Čmielová L (2013b) Environmental risk due to heavy metal contamination caused by old copper mining activity at Ľubietová deposit, Slovakia. Energ Env Res 3:182–197

    Google Scholar 

  • Arsenović MV, Pezo LL, Radojević ZM, Stanković SM (2013) Serbian heavy clays behavior: application in rough ceramics. Hem Ind 67:811–822

    Article  Google Scholar 

  • Bergaya, F., Theng, B.K.G., Lagaly, G. (Eds.), 2006. Handbook of Clay Science. Elsevier, Developments of Clay Science, Volume 1, AmsterdamBrown, G., Brindley, G.W., 1984. Crystal Structures of Clay Minerals and their X-ray Identification. Mineralogical Society, London

  • Biscaye PE (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society American Bulletin 76:803–832

    Article  Google Scholar 

  • Brown G, Brindley GW (1984) Crystal Structures of clay minerals and their X-ray Identification. Mineralogical Society, London

    Google Scholar 

  • Carretero MI, Dondi M, Fabbri B, Raimondo M (2012) The influence of shaping and firing technology on ceramic properties of calcareous and non-calcareous illitic–chloritic clays. Appl Clay Sci 20/6:301–306

    Google Scholar 

  • Carver RE (1971) Procedures in sedimentary petrology. John Wiley and Sons, New York

    Google Scholar 

  • Casagrande A (1948) Classification and Identification of soils. Transaction ASCE 113:901–930

    Google Scholar 

  • Chester R, Green RN (1968) The infrared determination of quartz in sediments and sedimentary rocks. Chem Geol 3:199–213

    Article  Google Scholar 

  • Christidis GE (2011) Industrial clays. In: Christidis GE (ed) Advances in the characterization of industrial minerals, EMU notes in mineralogy, vol 9. European Mineralogical Union and the Mineralogical Society of Great Britain, London, pp 341–414 (Chapter 9)

    Chapter  Google Scholar 

  • Daskshama V, Mohan BV, Lalithambika M, Nair CGR (1992) Sintering studies on plastic clays. Ceram Int 18:359–364

    Article  Google Scholar 

  • De Mesquita LMS, Rodrigues T, Gomes SS (1996) Bleaching of Brazilian kaolins using organic acids and fermented medium. Miner Eng 9:965–971

    Article  Google Scholar 

  • Dondi M, Fabbri B, Guarini G (1998) Grain-size distribution of Italian raw materials for building clay products: a reappraisal of the Winkler diagram. Clay Miner 33:435–442

    Article  Google Scholar 

  • Dondi M, Guarini G, Ligas P, Palomba M, Raimondo M (2001) Chemical, mineralogical and ceramic properties of kaolinitic materials from the Tresnuraghes mining district. Western Sardinia, Italy. Appl. Clay Sci 18:145–155

    Article  Google Scholar 

  • Dondi M, Raimondo M, Zanelli C (2014) Clays and bodies for ceramic tiles: reappraisal and technological classification. Appl Clay Sci 96:91–109

    Article  Google Scholar 

  • El-Azabi, N.H., 2000. Sedimentary facies, palaeoenvironments and facies development of the Miocene–Pliocene sequence in the Sadat–Wadi Hagul stretch, northwest Gulf of Suez and their time correlatives in the adjacent basins, Egypt. In: 5th International Conference on the Geology of the Arab World, Cairo University, Egypt, pp. 1135–1174

  • El-Fadaly E (2013) Characterization of porcelain stoneware tiles based on solid ceramic wastes. IJSR 4:602–608

    Google Scholar 

  • Farmer VC (1974) The infrared spectra of minerals. Mineralogical Society, London

    Book  Google Scholar 

  • Folk RL (2014) Petrology of sedimentary rocks. Hemphills Publ. Co, Austin, Texas

    Google Scholar 

  • Friedman GM, Sanders JE (1978) Principles of sedimentology. Wiley, New York

    Google Scholar 

  • Galos K (2011) Composition and ceramic properties of ball clays for porcelain stoneware tiles manufacture in Poland. Appl Clay Sci 51:74–85

    Article  Google Scholar 

  • Gámiz E, Melgosa M, Sánchez-Maranňón M, Martín-García JM, Delgado R (2005) Relationships between chemico-mineralogical composition and color properties in selected natural and calcined Spanish kaolins. Appli Clay Sci 28:269–282

    Article  Google Scholar 

  • Grim RE (1980) Clay mineralogy, 2nd edn. Mc Graw Hill Book Comp., Inc., New York, Toronto, London

    Google Scholar 

  • Hammami-Ben Zaied F, Abidi R, Slim-Shimi N, Somarin AK (2015) Potentiality of clay raw materials from grain the ceramic industry. Appl Clay Sci 112(113):1–9

    Article  Google Scholar 

  • Hlavay J, Jonas K, Elek S, Inczedy J (1978) Characterization of the particle size and the crystallinity of certain minerals by IR spectrophotometry and other instrumental methods; II, investigations on quartz and feldspar. Clay Clay Miner 26:139–143

    Article  Google Scholar 

  • Holtz RD, Kovacs WD (1981) An introduction to geotechnical engineering. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Ismael SI, Kharbish S (2013) Removing of as (V) from aqueous solution using natural and pretreated glauconite and halloysite. Carpath J Earth Env Sci 8:187–198

    Google Scholar 

  • Jordan MM, Sanfeliu T, De la Fuente C (2001) Firing transformations of tertiary clays used in the manufacturing of ceramic tile bodies. Appl Clay Sci 20:87–95

    Article  Google Scholar 

  • Jouenne CA (1990a) Traite de ceramiques et materiaux mineraux. Septima, Paris

    Google Scholar 

  • Kara A, Stevens R (2002) Characterization of biscuit fired bone china body microstructure. Part I: XRD and SEM of crystalline phases. J Eur Ceram Soc 22:731–736

    Article  Google Scholar 

  • Khalaf FI, Gaber AS (2008) Occurrence of cyclic palustrine and calcrete deposits within the lower Pliocene Hagul formation, East Cairo district, Egypt. J Afr Earth Sci 51:298–312

    Article  Google Scholar 

  • Konta, J., 1981. Properties of Ceramic Raw Materials. Ceramic Monographs, Handbook of Ceramics, Monograph 1.1.4, Interceram, 30, Nos. 1–2, 5–10, Verlag Schmid GmbH, Freiburg i. Brg

  • Krumbien WC, Pettijohn FJ (1988) Manual of sedimentary petrography. D. Appleton-century, New York

    Google Scholar 

  • Ma HZ, Wang B (2006) Multifunctional micro size modified kaolin and its application in wastewater treatment. J Hazard Mater 136:365–370

    Article  Google Scholar 

  • Madejová J, Komadel P (2001) Baseline studies of the clay minerals source society: infrared methods. Clay Clay Miner 49:410–432

    Article  Google Scholar 

  • Manning DAC (1995) Introduction to industrial mineral. Chapman & Hall, London , p 275ppEdition

    Book  Google Scholar 

  • Milheiro FAC, Freire MN, Silva AGP, Holanda JNF (2005) Densification behaviour of a red firing Brazilian Kaolinitic clay. Ceram Int 31:757–763

    Article  Google Scholar 

  • Modesto C, Bernardin AM (2008) Determination of clay plasticity: indentation method versus Pfefferkorn method. Appl Clay Sci 40:15–19

    Article  Google Scholar 

  • Moore DM, Reynolds RC Jr (1989) X-ray diffraction and the Identification and analysis of clay minerals. Oxford University Press, Oxford, p 332pp

    Google Scholar 

  • Murray, H.H., 2007. Applied Clay Mineralogy: Occurrences, Processing and Application of Kaolins, Bentonites, Palygorskite-Sepiolite, and Common Clays. Elsevier, Developments in Clay Science, (Volume 2)

  • Mycielska-Dowgiałło E, Ludwikowska-Kędzia M (2011) Alternative interpretation of grain-size data from quaternary deposits. Andean Geol 17:189–203

    Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim Cosmochim Acta 48:1523–1534

    Article  Google Scholar 

  • Nesbitt HW, Young GM, McLennan SM, Keays RR (1996) Effects of chemical weathering and sorting on the Petrogenesis of siliciclastic sediments with implications for provenance studies. J Geol 104:525–542

    Article  Google Scholar 

  • Ngun BK, Mohamad H, Sulaiman SK, Okada K, Ahmad ZA (2011) Some ceramic properties of clays from central Cambodia. Appl Clay Sci 53:33–41

    Article  Google Scholar 

  • Piltz G (1964) Untersuchung der Möglichkeiten der Aufhellung der Brennfarben von Ziegelrohstoffen, Westdt. Verl, Köln

    Book  Google Scholar 

  • Proust C, Jullien A, Forestier L (2004) Determination indirecte des limites d'Atterberg par gravimétrie dynamique. Compt Rendus Geosci 335:175–183

    Google Scholar 

  • Riley CH (1951) Relation of chemical properties to the bloating of clays. J Am Ceram Soc 34:121–128

    Article  Google Scholar 

  • Ritz M, Vaculíková L, Plevová E (2011) Application of infrared spectroscopy and Chemometric methods to Identification of selected minerals. Acta Geodyn Geomater 8:47–58

    Google Scholar 

  • Russell JD, Fraser AR (1994) Infrared methods. In: Wilson MJ (ed) Clay mineralogy: spectroscopic and chemical determinative methods. Chapman & Hall, London, pp 11–67 (Chapter 2)

    Chapter  Google Scholar 

  • Ryan W (1979) Properties of ceramics raw material. Pergamon Press, Oxford

    Google Scholar 

  • Seleem TA, Aboulela HA (2011) Seismicity and geologic Structures indubitable in Wadi Hagul, north Eastern Desert, Egypt. Int J Geosci 2:55–67

    Article  Google Scholar 

  • Tosca NJ, David TJ, Alexandra AM, Daniel HR, Roger ES, Andrew HK (2010) Clay mineralogy, organic carbon burial, and redox evolution in Proterozoic oceans. Geochim Cosmochim Acta 74(5):1579–1592

    Article  Google Scholar 

  • Vaculíková L, Plevová E (2005) Identification of clay minerals and micas in sedimentary rocks. Acta Geodyn Geomater 2:167–175

    Google Scholar 

  • Van Jaarsveld JGS, Van Deventer JSJ, Lukey GC (2012) The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers. Chem Eng J 89:63–73

    Article  Google Scholar 

  • Vantelon D, Pelletier M, Barres O, Thomas F, Michot LJ (2001) Fe, mg and al distribution in the octahedral sheet of montmorillonites. An infrared study in the OH-bending region. Clay Miner 36:369–379

    Article  Google Scholar 

  • Veglio F, Passarielo B, Toro L, Marabini AM (1996) Development of a bleaching process for a kaolin of industrial interest by oxalic, ascorbic, and sulfuric acids: preliminary study using statistical methods of experimental design. Ind Eng Chem Res 35:1680–1687

    Article  Google Scholar 

  • Vimonses V, Lei S, Jin B, Chow CWK, Saint C (2009) Adsorption of Congo red by three Australian kaolins. Appli Clay Sci 43(465):472

    Google Scholar 

  • Winkler HGF (1954) Bedeutung der Korngrößenverteilung und des Mineralbestandes von Tonen für die Herstellung grobkeramischer Erzeugnisse. Berichte der Deutschen Keramischen Gesellschaft 31:337–343

    Google Scholar 

  • Yanik G, Ceylantekin R, Taşçi E, Özçay Ü (2012) The Şahin village (Kütahya, Turkey) clay deposit and its possible utilization. Clay Miner 47:1–10

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Dr. Abdullah M. Al-Amri Editor-in-Chief Arabian Journal of Geosciences and for the Associate Editor Prof. Dr. Mehmet Sabri Çelik for their kind help. Thanks are also due to two anonymous reviewers for their valuable comments that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherif Kharbish.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharbish, S., Farhat, H.I. Mineralogy and physico-chemical properties of Wadi Badaa clays (Cairo-Suez district, Egypt): a prospective resource for the ceramics industry. Arab J Geosci 10, 174 (2017). https://doi.org/10.1007/s12517-017-2969-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-017-2969-1

Keywords

Navigation