Skip to main content
Log in

Physicochemical and ceramic properties of clays from jebel kebar (Central Tunisia)

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The mineralogical and chemical compositions and the physical properties are determined for three representative clay samples from the Sidi Bouzid area in Tunisia in order to evaluate their industrial aptitude for ceramic applications. The semi-quantitative mineralogical analysis shows that illite and kaolinite are the major clay phases associated with crystalline phases as quartz, K-feldspar and calcite. In addition, some quantities of smectite, interstratified illite–smectite, dolomite and gypsum are also detected. The chemical analysis reveals that the silica phase is relatively high. The CaO rate is approved by the mineralogical analysis. The classification of the selected clays by the Holtz and Kovacs diagram suggests their possible use in the manufacturing of the red bricks in ceramic industry. For the Geotechnical test, ceramic products were prepared by mixing the three clays with different weight proportions (40, 40, and 20% respectively for green clay, red clay and red silty clay samples).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elhechi, A., Srasra, E., Amari, A., and Tlig, S., Afr. Geosci. Rev., 2003, vol. 10, no. 3, pp. 215–226.

    Google Scholar 

  2. Elhechi, A., Ben Amor, O., Srasra, E., and Zargouni, F., Surf. Eng. Appl. Electrochem., 2009, vol. 45, no. 2, pp. 140–144.

    Article  Google Scholar 

  3. Mahmoudi, S., Srasra, E., and Zargouni, F., Appl. Clay Sci., 2008, vol. 42, pp. 125–129.

    Article  Google Scholar 

  4. Medhioub, M., Hajjaji, W., Hachani, M., Lopez-Galindo, A. Rocha, F., Labrincha, J.A., and Jamoussi, F., Clay Miner., 2012, vol. 47, pp. 165–175.

    Article  Google Scholar 

  5. Bennour, A., Mahmoudi, S., Srasra, E., Bousen, S., and Htira, N., Appl. Clay Sci., 2015, vol. 115, pp. 30–38.

    Article  Google Scholar 

  6. Bennour, A., Mahmoudi, S., Srasra, E., Htira, N., Bousen, S., and Zargouni, F., Appl. Clay Sci., 2015, vol. 118, pp. 212–220.

    Article  Google Scholar 

  7. Zevin, L.S. and Kimmel, G., Quantitative X-Ray Diffractometry, New York: Springer-Verlag, 1995.

    Book  Google Scholar 

  8. Ratzemberg, H., ZI, Ziegelind. Int., 1990, vol. 43, pp. 348–354.

    Google Scholar 

  9. Dondi, M., Marsigli, M., and Ventura, I., Ceramurgia, 1998, vol. 28, pp. 1–8.

    Google Scholar 

  10. Meseguer, S., Pardo, F., Jordan, MM., Sanfeliu, T., and Gonzalez, I., Appl. Clay Sci., 2010, vol. 47, pp. 372–377.

    Article  Google Scholar 

  11. Bergaya, F., Theng, B.K.G., and Lagaly, G., Development in Clay Science. Handbook of Clay Science, Amsterdam: Elsevier, 2006.

    Google Scholar 

  12. Madsen, F.T. and Muller-Vonmoos, M., Appl. Clay Sci., 1989, vol. 4, no. 2, pp. 143–156.

    Article  Google Scholar 

  13. van Jaarsveld, J., van Deventer, J., and Lukey, G., Chem. Eng. J., 2002, vol. 89, pp. 63–73.

    Article  Google Scholar 

  14. Madejova, J., Vib. Spectrosc., 2003, vol. 944, pp. 1–10.

    Article  Google Scholar 

  15. Caillère, S., Henin, S., and Rautureau, M., Mineralogie des Argiles, Vol. 1: Structure et Proprietes Physico-Chimiques, Paris: Masson, 1982.

    Google Scholar 

  16. Farmer, V.C., The Layer Silicates: In the Infrared Spectra of Minerals, London: Miner. Soc., 1974, pp. 331–363.

    Book  Google Scholar 

  17. Madejova, J. and Komadel, P., Clay Clay Miner., 2001, vol. 49, pp. 410–432.

    Article  Google Scholar 

  18. van Olphen, H. and Fripiat, J.J., Data Handbook for Clay Materials and Other Non-Metallic Minerals, Oxford: Pergamon, 1979.

    Google Scholar 

  19. Srasra, E. and Trabelsi-Ayedi, M., Asian J Chem., 2001, vol. 13, no. 4, pp. 1287–1293.

    Google Scholar 

  20. Holtz, R.D. and Kovacs, W.D., Curr. Res. Earth Sci., 1981, vol. 244, pp. 733–808.

    Google Scholar 

  21. Fitzjohn, W.H. and Worrall, W.E., Trans. J. Br. Ceram. Soc., 1980, vol. 79, pp. 74–81.

    Google Scholar 

  22. Cizeron, G., Ceram. Ind., 1985, vol. 795, pp. 405–408.

    Google Scholar 

  23. Peters, T. and Iberg, R., Am. Ceram. Soc. Bull., 1978, vol. 57, p. 504.

    Google Scholar 

  24. AFNOR EN99, Carreaux et Dalles Ceramiques. Determination de l’Absorption d’Eau, La Plaine Saint-Denis: Afnor Group, 1982.

  25. Assal, H.H., El-Didamony, H., Ramez, M., and Mossalamy, F.H., Ind. Ceram., 1999, vol. 19, pp. 82–92.

    Google Scholar 

  26. Thomas, H. and Peer, G., ZI, Ziegelind. Int., 2001, vol. 12, pp. 20–26.

    Google Scholar 

  27. Yakoubi, N., Aberkan, M., and Ouadia, M., C. R. Geosci., 2006, vol. 338, pp. 693–702.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Elhechi.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Amor, O., Elhechi, A., Srasra, E. et al. Physicochemical and ceramic properties of clays from jebel kebar (Central Tunisia). Surf. Engin. Appl.Electrochem. 53, 302–310 (2017). https://doi.org/10.3103/S1068375517030024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375517030024

Keywords

Navigation