Skip to main content
Log in

Mineralogical, geochemical, geotechnical and technological characterization of Tunisian Oued Zarga Clays: industrial application in the ceramic industry

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Lower Cretaceous of northwest Tunisia shows a large series of clayey materials for use in the ceramics industry. The Mineralogical, chemical, thermal analyses, technological proprieties and grain size distribution were carried out on clay samples selected from areas of Oued Zarga. Clay materials are considered illite clays associated with smectite. Chemical analysis indicates that these clays are notably siliceous. The alumina and iron oxide content, with a mean of 11% and 5%, respectively. Geotechnical tests show that these clays have medium plasticity values (IP = 10.5–19, 75%). The results of the geotechnical analyzes show low shrinkage during drying and baking, and high flexural strength. For this argument, the clay mixture made without mixing quartz or any other component. Technical tests show that the properties comply with international ceramic standards (ISO). Ceramic tiles and bricks prepared from these clays have suitable characteristics without defects and can be granted to European standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Amira AK, Taher Z, Mohamed A, Mohamed G (2015) New evidence on the geologic setting of majerda Valley plain (northern Tunisia) from integrated geophysical study of Trias bodies. An Geophy 58:3

    Article  Google Scholar 

  • Amira AK, Mohamed Sadok BS, Ines E, Mohamed G (2017) Halocinese and Halotectonics in the Northern Atlas: Case Study of the Triassic Outcrop of J. El Matria (Oued Zarga Area). J Geol Geophys 6:2381–8719

    Google Scholar 

  • Ancey C (2007) Plasticity and geophysical flows: a review. J Non Newtonian Fluid Mech 142:4–35

    Article  Google Scholar 

  • Baccour H, Medhi M, Jamoussi F, Mhiri T (2009) Influence of firing temperature on the ceramic properties of Triassic clays from Tunisia. J Mater Process Technol 209:2812–2817

    Article  Google Scholar 

  • Baccour A, Zghal A, Medhioub M, Mhiri T (2011) Caractérisation physicochimique et mécanique de matériaux céramiques obtenus à partir des argiles Tunisiennes. Verres, Céramiques Composites Vol1 2:25–33

    Google Scholar 

  • Balan E, Allard T, Boizot B, Morin G, Muller JP (1999) Structural Fe3+ in natural kaolinites: New insights from electron paramagnetic resonance spectra fitting at X and Qband frequencies. Clays Clay Miner 47:605–616

    Article  Google Scholar 

  • Benco L, Tunega D, Hafner J, Lischka H (2001) Upper limit of the O-H–O hydrogen bond. Ab initio study of the kaolinite structure. J Phy Chem 105:10812–10817

    Article  Google Scholar 

  • Bennour A, Mahmoudi S, Srasra E, Boussen S, Htira N (2015) Composition, firing behavior and ceramic properties of the Sejnène clays (northwest Tunisia). Appl Clay Sci 115:30–38

    Article  Google Scholar 

  • Bergaya F, Theng BKG, Lagaly G (2006) Handbook Clay Sci. Elsevier, Amsterdam

    Google Scholar 

  • Ben Salah I, Ben M’barekJemaï M, Ben Saad A, Mezza S (2020) Assessment of the energy conversion on the thermal balance and atmospheric emissions in ceramic tile product industry in Tunisia: a case study. Atmo Clim Sci 10:421–442

    Google Scholar 

  • Bigot V (1921) Retrait au séchage des kaolins et argiles : CR. Acad. Sci. Paris, Vol 21

  • Bolze J (1954) Age des séries schisteuses et dolomitiques de l’Ichkeul et de l’Hairch (Tunisie septentrionale). C R Acad Sci Paris 20:2008–2010

    Google Scholar 

  • Borchardt G A (1977) Montmorillonite and other Smectites minerals: in; Minerals in Soil Environments: ed. Dixon, JB and Weed, SB. Soil Science Society of America, Madison, Wisconsin : 299–330

  • Borchini R, Bertù L, Ferrario MM, Veronesi G, Bonzini M, Dorso M, Cesana G (2020) Prolonged job strain reduces time-domain heart rate variability on both working and resting days among cardiovascular-susceptible nurses. Int J Occup Med Environ Health 28:42–51

  • Busnardo R, Memmi L (1972) La serie infracrktacee du Djebel Oust (Tunisie). Notes Serv Gol Tunis 38:49–61

    Google Scholar 

  • Burollet P F (1956) Contribution à l'étude stratigraphique de la Tunisie centrale. Vol 18:35

  • Casagrande A (1947) Classification and identification of soils. Proc Am Soc Civ Eng 73:783–810

    Google Scholar 

  • Chihi L (1995) Les fossés néogènes à quaternaires de la Tunisie et de la mer pélagienne dans le cadre géodynamique de la Méditerranée centrale. Thèse de Doctorat 3ème cycle, Faculté des Sciences de Tunis, Université de Tunis El Manar II 324

  • Dlala M, Rebai S (1994) Relation compression-extension miocène supérieur à Quaternaire implication sismotectonique 319:945–950

  • Dlala M (1995) Seismotectonic study in northern Tunisia. Tectonophysics 209:171–174

    Article  Google Scholar 

  • Demir I, Orhan M (2003) Reuse of waste bricks in the production line. Build Environ 38:p12

    Article  Google Scholar 

  • Egilegora B, Jouharab H, Zuazuac J, Al-Mansourd F, Plesnike K, Montorsif L, Manzinig L (2019) Analysis of the Potential for Waste Heat Recovery in Three Sectors: Aluminium Low Pressure Die Casting, Steel Sector and Ceramic Tiles Manufacturing Sector. Inter J Thermo flui 1–2:2666–2027

  • Elkhazri A, Razgallah S, Abdallah H, Ben Haj Ali N (2009) The Barremo-Aptian anoxic event « OAE » in northeastern Tunisia. Interest of foraminifers. Revue De Paléobiologie, Genève 28:93–130

    Google Scholar 

  • El Ouahabi M, Daoudi L, Fagel N (2013) Preliminary mineralogical and geotechnical characterization of clays from Marocco. Application to Ceramic Industry. Clay Miner 49:1–17

    Google Scholar 

  • El Yakoubi N (2006) Potentialités d’utilisation des argiles marocaines dans l’industrie céramique. Cas des gisements de Jbel Kharrou et de Benhmed (Meseta marocaine occidentale). Thèse-Sciences. Univ Mohammed v, Agdal 212:693–702

    Google Scholar 

  • Farmer V C (1974) The infrared spectra of minerals. Mineral. Soc 15:331–363

  • Farmer VC (2000) Transverse and longitudinal crystal modes associated with OH stretching vibrations in single crystals of kaolinite and dickite. Spectrochimica Acta. Part A. Molecular and Biomolecular Spectroscopy 56:927–930

  • Felhi M, Tlili A, Gaied ME, Montacer M (2008a) Mineralogical study of kaolinitic clays from Sidi El Bader in the far north of Tunisia. Appl Clay Sci 39:208–217

  • Felhi M, Tlili A, Montacer M (2008b) Geochemistry, petrographic and spectroscopic studies of organic matter of clay associated kerogen of Ypresian series: Gafsa-Metlaoui phosphatic basin, Tunisia. Resour Geol 59:428–436

  • Gadsden A (1975) Infrared spectra of minerals and related inorganic compounds. The Butterworth group, UK

    Google Scholar 

  • Gargouri-Razgallah S (1983) Le Cénomanien de Tunisie centrale : étude paléoécologique, stratigraphique, micropaléontologique et paléogéographique. Thèse de Doctorat Sciences, Université Claude Bernard, Lyon, p 215

    Google Scholar 

  • Giacomo B, Giula M, Giuliana B, Maria CB (2020) Sustaibility in Italian Ceramic Tile Production: Evaluation of the Environemental Impact. Appl Sci 9063:10–24

    Google Scholar 

  • Goodman BA, Russell JD, Fraser AR, Woodhams FWD (1976) A Mossbauer and IR spectroscopic study of the structure of nontronite. Clays Clay Miner 24:53–59

    Article  Google Scholar 

  • Grim RE (1960) Clay mineralogy. McGraw-Hill Inc., New York, p 596

  • Gunasekaran S, Anbalagan G (2007) Spectroscopic characterization of natural calcite minerals. Spectrochimica Acta (Part A) 68:656–664

    Article  Google Scholar 

  • Hajjaji W, Jeridi K, Seabra MP, Rocha F, Labrincha JA, Jamoussi F (2009) Composition and properties of glass obtained from Early Cretaceous Sidi Aich sands (Central Tunisia). Ceramics Int 35:3229–3234

    Article  Google Scholar 

  • Hajjaji W, Hachani M, Moussi B, Jeridi K, Medhioub M, López-Galindo A, Rocha F, Labrincha JA, Jamoussi F (2010) Mineralogy plasticity clay sediments north east Tunisia. J Afr Earth Sci 57:41–46

    Article  Google Scholar 

  • Hammami F, Abidi R, Slim-Shimi N, Somarin A (2015) Potentiality of clay rawmaterials from Gram area (Northern Tunisia) in the ceramic industry. Appl Clay Sci 112:1–9

    Article  Google Scholar 

  • Holtz RD, Kovacs WD (1981) An introduction to geotechnical engineering. Prentice-Hall Inc., Englewood Cliffs, NJ, pp 1–733

  • Jeridi K, Hachni M, Hajjaji W, Moussi B, Medhioub M, Lopez-Galindo A, Kooli F, Zargouni F, Labrincha J, Jamoussi F (2008) Technological behaviour of some Tunisian clays prepared by dry ceramic processing. Appl Clay Sci 43:339–350

    Google Scholar 

  • Kankao OO, Ngon NGF, Mbog MB, Tehna N, Bayiga EC, Mbaï JS, Etame J (2022) Mineralogical, Geochemical Characterization and Physicochemical Properties of Kaolinitic Clays of the Eastern Part of the Douala Sub-Basin, Cameroon. Central Africa Appl Sci 12:9143

    Google Scholar 

  • Khemakhem SR, Amar Ben Hassen R, Larbot A, Ben Salah A, Cot L (2004) Production of tubular ceramic membranes for microfiltration and ultrafiltration. Ind Ceram 24:117–120

    Google Scholar 

  • Kodama H (1985) Infrared Spectra of Minerals. Reference Guide to Identification and Characterization of Minerals for the Study of Soils. Technical Bulletin, Research Branch, Agriculture Canada, Ottawa

  • L.C.P.C (1987) Limites d’Atterberg, limite de liquidité, limite de plasticité. (L. C. Chaussées, Éd.)

  • Madare S I, Thewissen J G M, Hussain S T (2003) Additional holotype remains of Ambulocetus natans (Cetacea, Ambulocetidae), and their implications for locomotion in early whales. J Verteb Pale 22:405–22

  • Mahmoudi S, Ezzeddine S, Zargouni F (2008) The use of Tunisian Barremian clay in the traditional ceramic industry optimization of ceramic properties. Appl Clay Sci 42:125–129

    Article  Google Scholar 

  • Mahmoudi S, Srasra E, Zargouni F (2014) Composition and Ceramic Properties of Carbonate-Bearing: Illitic Clays from North-Eastern Tunisia. Arab J Sci Eng 39:5729–5737

    Article  Google Scholar 

  • Mahmoudi S, Bennour A, Meguebli A, Srasra E, Zargouni F (2016) Characterization and traditional ceramic application of clays from the Douiret region in South Tunisia. Appl Clay Sci 127:78–87

    Article  Google Scholar 

  • Mahmoudi S, Bennour A, Srasra E, Zargouni F (2017) Characterization, firing behavior and ceramic application of clays from the gabes region in south Tunisia Appl. Clay Sci 135:215–225

    Article  Google Scholar 

  • Madejova J, Bujdak J, Petit S, Komadel P (2001) Effects of chemical composition and temperature of heating on the infrared spectra of Li-saturated dioctahedral smectites. (II) Near-infrared region. Clay Miner 35:753–751

    Article  Google Scholar 

  • Madejova J (2003) FT-IR techniques in clay mineral structures: review. Vib Spectrosc 3:1–10

    Article  Google Scholar 

  • Meseguer S (2010) Ceramic behaviour of five Chilean clays which can be used in the manufacture of ceramic tile bodies. Appl Clay Sci 47:372–377

    Article  Google Scholar 

  • Meier LP, Kahr G (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper (II) ion with triethylenetetramine and tetraetylenepentamine. Clays Clay Miner 47:386–388

    Article  Google Scholar 

  • Memmi L (1970) Observations biologiques sur les oiseaux du lac de Tunis. (U. Tunis., Éd.). p 35

  • Mocciare A, Conconi MS, Scian A N (2021) Ceramic properties of kaolinite clay with monoaluminum phosphate (Al (H2PO4)3) addition. J Therm Calorim 47:197–203

  • Modesto C, Bernardin AM (2008) Determination of clay plasticity: indentation method versus Pfefferkorn method. Appl Clay Sci 40:15–19

    Article  Google Scholar 

  • Monroy R, Romero Y A, an Gelves J F (2018) Consumption of Energy in the Manufacturing of Ceramic Brick in the Metropolitan Area of Cúcuta, Colombia. J Phys Conf Ser 1126: Article ID: 012014

  • M’Rabet A, Mejri F, Burollet PF, Memmi L, Chandoul H (1995) Recueil des coupes-types de Tunisie. Enterp Tunisienne d’Activ Petrolières Mém Tunis 8:123

    Google Scholar 

  • Nan JKM (2021) From clay to ceramic: an alchemical process of self- transformation. In the power of Craft in Art therapy. Routledge Pub Co, USA

    Google Scholar 

  • Oumaima G, Bechir M, Walid H, Pascal P, Johan Y, Fakher J (2021) Low-cost northern tunisian kaolinitic clay-based refractory materials and effect of a rich alumina clay addition. Arab J Geo 14:1595

    Article  Google Scholar 

  • Proust D, Caillaud J, Fontaine C (2006) Clay minerals in early amphibole weathering: tri- to dioctahedral sequence as a function of crystallization sites in the amphibole. Clays Clay Miner 54:351–362

    Article  Google Scholar 

  • Parthasarathy G, Choudary, B M, Sreedhar B, Kunwar A C Srinivasan R (2003) Ferrous saponite from the Deccan Trap, India, and its application in adsorption and reduction of hexavalent chromium. Amer Mineral 88:1983–1988

  • Rajput GS, Singh A, Shrivastava P, Kewat ML, Sharma SK (2004) In: Indigenous Haveli System of Participatory Rainwater Management in Central India. J.N.K.V.VV, Jabalpur 10:1– 22

  • Ramachandran V S, Paroli R M, Beaudoin J J, Delgado A H (2008) Handbook oftThermal Analysis of Construction Materials, p 679

  • Rouvier H (1977) Géologie de l’extreˆme nord tunisien: tectonique et paléogéographie superposées a` l’extrême orientale la chaine nord maghrébine (Geology of northern Tunisia: tectonics and paleogeography associated to the eastern extreme of maghrebine chain). Sciences thesis, Thèse es Sci, Univ Paris VI, France

  • Salaj J (1969) Zones Planctoniques du Crétacé et du Paléogène de Tunisie, 31:5–23

  • Sdiri A, Higash T, Hatta T, Jamoussi F, Tase N (2010) Mineralogical and spectroscopic characterization, and potential environmental use of limestone from the Abiod formation. Tunisia Environ Earth Sci 6:1275–1287

    Article  Google Scholar 

  • Solignac M (1927) Étude géologique de la Tunisie septentrionale, Dir. Gén. Trav. Publ. (Serv. Min.). Lyon, p 756

  • Strazzera B, Dondi M, Marsigli M (1997) Composition and ceramic properties of tertiary clays from southern Sardania Italy. Appl Clay Sci 12:247–266

    Article  Google Scholar 

  • Swapan K, Kausik D (2005) Shrinkage and strength behaviour of quartzitic and kaolinitic clays in wall tile compositions. Appl Clay Sci 29:137–143

    Article  Google Scholar 

  • Vander Marel H W, Beutels Pacher H (1976) Atlas infrared spectroscopy of clay minerals and their admixtures. Elsev Sci Clays Min 12:396

  • Ye M, Li B, Zhang Y, Li H, Wang X, Hu J (2011) Confined water nano film promoting nonenzymatic degradation of DNA molecules. J Phys Chem 115:2754–2758

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faten Hammami.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Domenico M. Doronzo

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammami, F., May, M.E. Mineralogical, geochemical, geotechnical and technological characterization of Tunisian Oued Zarga Clays: industrial application in the ceramic industry. Arab J Geosci 16, 76 (2023). https://doi.org/10.1007/s12517-022-11101-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-022-11101-6

Keywords

Navigation