Skip to main content

Abstract

Infrared absorption spectroscopy is a rapid, economical and nondestructive physical method universally applicable to structural analysis. The technique is so versatile that it can be used both as a source of the physical parameters of crystal lattice determinations, and as a means of eliciting purely empirical qualitative relationships between specimens. It is an intrinsically simple technique that deserves to be more widely used in clay mineralogy and soil science, and this chapter aims to provide some basic information to help bring this about. It is proposed to indicate briefly the basic principles of IR, describe the instrumentation and methods, present some typical spectra of standard minerals, and finally to show spectra of a few representative soil clays, indicating how they may be used to assess the constituent minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamek, P., Linhova, R. and Ruzek, J. (1969) Infrared spectroscopy in the study of silica phases. Il Sborník Vysoké Skoly chemicko-technologické v Praze, 13, 259–283.

    Google Scholar 

  • Adams, M. J. and Black, I. (1983) Application of a microcomputer system in an infrared laboratory. Journal of Automatic Chemistry, 5, 9–13.

    Article  Google Scholar 

  • Breck, D. W. (1974) Zeolite Molecular Sieves: Structure Chemistry and Use, Wiley, New York.

    Google Scholar 

  • Buckley, H. A., Bevan, J. C., Brown, K. M. et al. (1978) Glauconite and celadonite: two separate mineral species. Mineralogical Magazine, 42, 373–382.

    Article  Google Scholar 

  • Chester, R. and Elderfield, H. (1968) The infrared determination of opal in siliceous deep-sea sediments. Geochimica et Cosmochimica Acta, 32, 1128–1141.

    Article  Google Scholar 

  • Chester, R. and Green, R. N. (1968) The infrared determination of quartz in sediments and sedimentary rocks. Chemical Geology, 3, 199–213.

    Article  Google Scholar 

  • Coates, J. P. (1977) IR analysis of toxic dusts. Analysis of collected samples of quartz and asbestos. Part 1. American Laboratory (Fairfield, Connecticut, USA), 9, 105–108,

    Google Scholar 

  • Coates, J. P. (1977) IR analysis of toxic dusts. Analysis of collected samples of quartz and asbestos. Part 1. American Laboratory (Fairfield, Connecticut, USA), 9, 110–111.

    Google Scholar 

  • Cradwick, P. D. G., Farmer, V.C., Russell, J. D. et al. (1972) Imogolite, a hydrated aluminium silicate of tubular structure. Nature, 240, 187–189.

    Article  Google Scholar 

  • Dupuis, T., Ducloux, J., Butel, P. and Nahon, D. (1984) Etude par spectrographie infrarouge d’un encroûtement calcaire sous galet. Mise en evidence et modelisation expérimental d’une suite minèrale évolutive à partir de carbonate de calcium amorphe. Clay Minerals, 19, 605–614.

    Article  Google Scholar 

  • Durig, J. R. (1980) Analytical applications of FTIR to molecular and biological systems. NATO Advanced Study Institute Series, D. Reidel, Dordrecht.

    Book  Google Scholar 

  • Farmer, V. C. (1964) Infrared absorption of hydroxyl groups in kaolinite. Science, 145, 1189–1190.

    Article  Google Scholar 

  • Farmer, V. C. (1974) The Infrared Spectra of Minerals. Mineralogical Society, London.

    Google Scholar 

  • Farmer, V. C. and Mitchell, B. D. (1963) Occurrence of oxalates in soil clays following hydrogen peroxide treatment. Soil Science, 96, 221–229.

    Article  Google Scholar 

  • Farmer, V. C. and Russell, J. D. (1964) The infrared spectra of layer silicates. Spectrochimica Acta, 20, 1149–1173.

    Article  Google Scholar 

  • Farmer, V. C. and Russell, J. D. (1966) Effects of particle size and structure on the vibrational frequencies of layer silicates. Spectrochimica Acta, 22, 389–398.

    Article  Google Scholar 

  • Farmer, V. C., Fraser, A. R. and Tait, J. M. (1979) Characterization of the chemical structures of natural and synthetic aluminosilicate gels by infrared spectroscopy. Geochimica et Cosmochimica Acta, 43, 1417–1420.

    Article  Google Scholar 

  • Farmer, V. C., Russell, J. D., Ahlrichs, J. L. and Velde, B. (1967) Vibrations of the hydroxyl group in layer silicates. Bulletin de la Groupe Française des Argiles, 19, 5–10.

    Google Scholar 

  • Farmer, V. C., Russell, J. D., McHardy, W. J. et al. (1971) Evidence of loss of protons and octahedral iron from oxidized biotites and vermiculites. Mineralogical Magazine, 38, 121–137.

    Article  Google Scholar 

  • Farmer, V. C., Fraser, A. R., Russell, J. D. and Yoshinaga, N. (1977) Recognition of imogolite structures in allophanic clays by infrared spectroscopy. Clay Minerals, 12, 55–57.

    Article  Google Scholar 

  • Farmer, V. C., Fraser, A. R., Robertson, L. and Sleeman, J. R. (1984) Proto-imogolite allophane in podzol concretions in Australia: possible relationship to aluminous ferralitic (lateritic) cementation. Journal of Soil Science, 35, 333–340.

    Article  Google Scholar 

  • Ferraro, J. R. (1982) The Sadtler Infrared Spectra Handbook of Minerals and Clays. Sadtler/Heyden, London.

    Google Scholar 

  • Goodman, B. A., Russell, J. D., Fraser, A. R. and Woodhams, F. W. D. (1976) A Mössbauer and IR spectroscopic study of the structure of nontronite. Clays and Clay Minerals, 24, 53–59.

    Article  Google Scholar 

  • Hadni, A. (1967) Essentials of Modern Physics Applied to the Study of the Infrared. Pergamon, Oxford.

    Google Scholar 

  • Hayashi, H., Otsuka, R. and Imai, N. (1969) Infrared study of sepiolite and palygorskite on heating. American Mineralogist, 54, 1613–1624.

    Google Scholar 

  • Juo, A. S. R. and White, J. L. (1969) Orientation of the dipole moments of hydroxyl groups in oxidized and unoxidized biotite. Science, 165, 804–805.

    Article  Google Scholar 

  • Kodama, H. (1985) Infrared Spectra of Minerals. Reference Guide to Identification and Characterization of Minerals for the Study of Soils. Technical Bulletin 1985-1E,Research Branch, Agriculture Canada, Ottawa.

    Google Scholar 

  • Kodama, H. and Oinuma, K. (1963) Identification of kaolin minerals in the presence of chlorite by X-ray diffraction and infrared absorption spectra. Clays and Clay Minerals, 11, 236–249.

    Article  Google Scholar 

  • Koyama, K. and Takeuchi, Y. (1977) Clinoptilolite: the distribution of potassium atoms and its role in thermal stability. Zeitschrift fuer Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie, 145, 216–239.

    Google Scholar 

  • Langer, K. and Raith, M. (1974). Infrared spectra of Al−Fe(III)-epidotes and zoisites, Ca2(Al1-pFe3+ p)Al2O(OH)[Si2O7][SiO4]. American Mineralogist, 59, 1249–1258.

    Google Scholar 

  • Lazarev, A. N. (1974) The dynamics of crystal lattices, in The Infrared Spectra of Minerals (ed. V. C. Farmer). Mineralogical Society, London, pp. 69–86.

    Google Scholar 

  • Ledoux, R. L. and White J. L. (1964) Infrared study of selective deuteration of kaolinite and halloysite at room temperature. Science, 145, 47–49.

    Article  Google Scholar 

  • Lehr, J. R., Brown, E. H. and Frazier, A. W. (1967). Crystallographic Properties of Fertilizer Compounds. Tennessee Valley Authority, Chemical Engineering Bulletin no. 6. National Fertilizer Development Center, Muscle Shoals, AL.

    Google Scholar 

  • Martin, A. E. (1980) In Vibrational Spectra and Structures. Vol. 8 Infrared Interferometric Spectrometers (ed. J. R. Durig). Elsevier, Amsterdam.

    Google Scholar 

  • Mendelovici, E., Yariv, S. and Villalba, R. (1979). Iron-bearing kaolinite in Venezuelan laterites: I. Infrared spectroscopy and chemical dissolution evidence. Clay Minerals, 14, 323–331.

    Article  Google Scholar 

  • Moenke, H. (1962) Mineralspektren I. Akademie-Verlag, Berlin.

    Google Scholar 

  • Moenke, H. (1966) Mineralspektren II. Akademie-Verlag, Berlin.

    Google Scholar 

  • Nadeau, P. H. (1980) Burial and contact metamorphism in the Mancos Shale. PhD Thesis, Dartmouth College, Hanover, New Hampshire, 200 pp.

    Google Scholar 

  • Nadeau, P. H. and Bain, D. C. (1986) Composition of some smectites and diagenetic illitic clays and implications for their origin. Clays and Clay Minerals, 34, 455–465.

    Article  Google Scholar 

  • Nadeau, P. H., Farmer, V. C., McHardy, W. J. and Bain, D. C. (1985) Compositional variations of the Unterrupsroth beidellite. American Mineralogist, 70, 1004–1010.

    Google Scholar 

  • Neal, M. and Worrall, W. E. (1977). Mineralogy of fireclays: part 1. The crystallinity of kaolinite in fireclays. Transactions of the British Ceramic Society, 76, 57–61.

    Google Scholar 

  • Nyquist, R. A. and Kagel, O. (1971) Infrared Spectra of Inorganic Compounds. Academic Press, London.

    Google Scholar 

  • Oinuma, K. and Hayashi, H. (1968) Infrared spectra of clay minerals. Journal of Tokyo University, General Education (Natural Sciences), 9, 57–98.

    Google Scholar 

  • Prost, R., Dameme, A., Huard, E. et al. (1989) Infrared study of structural OH in kaolinite, dickite, nacrite, and poorly crystalline kaolinite at 5 to 600 K. Clays and Clay Minerals, 37, 464–468.

    Article  Google Scholar 

  • Rendon, J. L. and Serna, C. J. (1981) IR spectra of powder hematite: effects of particle size and shape. Clay Minerals, 16, 375–382.

    Article  Google Scholar 

  • Rouxhet, P. G., Samudacheata, N., Jacobs, H. and Anton, O. (1977) Attribution of the OH stretching bands of kaolinite. Clay Minerals, 12, 171–180.

    Article  Google Scholar 

  • Russell, J. D. (1974) Instrumentation and techniques, in The Infrared Spectra of Minerals (ed. V. C. Farmer), Mineralogical Society, London.

    Google Scholar 

  • Russell, J. D. (1979) Infrared spectroscopy of ferrihydrite: evidence for the presence of structural hydroxyl groups. Clay Minerals, 14, 109–114.

    Article  Google Scholar 

  • Russell, J. D. (1987) Infrared spectroscopy of inorganic compounds, in Laboratory Methods in Infrared Spectroscopy (ed. H. Willis), Wiley, New York.

    Google Scholar 

  • Russell, J. D., Farmer, V. C. and Velde, B. (1970) Replacement of OH by OD in layer silicates and identification of the vibrations of these groups in infrared spectra. Mineralogical Magazine, 37, 869–879.

    Article  Google Scholar 

  • Russell, J. D., Birnie, A. and Fraser, A. R. (1984). High-gradient magnetic separation (HGMS) in soil clay mineral studies. Clay Minerals, 19, 771–778.

    Article  Google Scholar 

  • Serna, C. J., Rendon, J. L. and Iglesias, J. E. (1982) Infrared surface modes in corundum-type microcrystalline oxides. Spectrochimica Acta, 38A, 797–802.

    Google Scholar 

  • Serna, C. J., Vanscoyoc, G. E. and Ahlrichs, J. L. (1977) Hydroxyl groups and water in palygorskite. American Mineralogist, 62, 784–792.

    Google Scholar 

  • Slonimskaya, M. V., Besson, G., Dainyak, L. G. et al. (1986) Interpretation of the IR spectra of celadonites and glauconites in the region of OH-stretching frequencies. Clay Minerals, 21, 377–388.

    Article  Google Scholar 

  • Tarasevich, Yu. I. (1970) Spectral study of the thermal dehydration of palygorskite. Dopovidi Akademii Nauk Ukrains’koi RSR, Seriya B, 32, 938–942.

    Google Scholar 

  • Tarte, P. (1965). Experimental study and interpretation of infrared spectra of silicates and germanates. Memoires de l’Academie Royale de Belgique Classe des Science 8°, 35, parts 4a, b.

    Google Scholar 

  • Theng, B. K. G., Russell, M., Churchman, G. J. and Parfitt, R. L. (1982) Surface properties of allophane, halloysite and imogolite. Clays and Clay Minerals, 30, 143–149.

    Article  Google Scholar 

  • Tuddenham, W. M. and Lyon, R. J. P. (1959) Relation of infrared spectra and chemical analysis for some chlorites and related minerals. Analytical Chemistry, 31, 377–380.

    Article  Google Scholar 

  • Turrell, G. (1972) Infrared and Raman Spectra of Crystals. Academic Press, London.

    Google Scholar 

  • Van der Marel, H. W. and Beutelspacher, H. (1976) Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures. Elsevier, Amsterdam.

    Google Scholar 

  • Vedder, W. (1964) Correlations between infrared spectrum and chemical composition of mica. American Mineralogist, 49, 736–768.

    Google Scholar 

  • Weiner, S. and Goldberg, P. (1990) On–site Fourier transform-infrared spectrometry at an archaeological excavation. Spectroscopy, 5, 46–50.

    Google Scholar 

  • White, R. G. (1964) Handbook of Industrial Infrared Analysis. Plenum Press, New York.

    Google Scholar 

  • Wilkins, R. W. T. and Ito, J. (1967) Infrared spectra of some synthetic talcs. American Mineralogist, 52, 1649–1661.

    Google Scholar 

  • Wilson, M. J., Russell, J. D. and Tait, J. M. (1974) A new interpretation of the structure of disordered α-cristobalite. Contributions to Mineralogy and Petrology, 47, 1–6.

    Article  Google Scholar 

  • Wilson, M. J., Russell, J. D., Tait, J. M. et al. (1981) A swelling hematite/layer silicate complex in weathered granite. Clay Minerals, 16, 261–278.

    Article  Google Scholar 

  • Wilson, M. J., Russell, J. D., Tait, J. M. et al. (1984) Macaulayite, a new mineral from North-East Scotland. Mineralogical Magazine, 48, 127–129.

    Article  Google Scholar 

  • Yariv, S. H. and Mendelovici, E. (1979) The effect of degree of crystallinity on the infrared spectrum of hematite. Applied Spectroscopy, 33, 410–411.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Russell, J.D., Fraser, A.R. (1994). Infrared methods. In: Wilson, M.J. (eds) Clay Mineralogy: Spectroscopic and Chemical Determinative Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0727-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0727-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4313-7

  • Online ISBN: 978-94-011-0727-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics