Skip to main content

Advertisement

Log in

State of the Art Hybrid Technology: PET/CT

  • Cardiac Nuclear Imaging (A Cuocolo, Section Editor)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

In the recent years, hybrid positron emission tomography (PET)/computed tomography (CT) scanners have been increasingly utilized in cardiac applications. PET imaging quality has been improved by the use of new scintillators, small detector element size, and fully 3D iterative reconstruction techniques with time-of-flight information and resolution recovery. Further quality enhancements for cardiac imaging can be obtained by tracking and correcting for cardiac and breathing motion with respiratory gating devices and advanced software techniques. The primary tracers used for PET/CT cardiac imaging are Rubidium-82 (82Rb) and Nitrogen-13-ammonia (13N-ammonia) and 18-F fluorodeoxyglucose used for myocardial viability imaging. A new F-18 perfusion tracer (F-18 Flurpiridaz) is being evaluated. High-resolution multi-slice CT component of the hybrid scanner allows accurate attenuation correction for PET, measurement of CT calcium, and contrast CT angiography. Hybrid PET/CT protocols have demonstrated increased diagnostic accuracy for the detection of obstructive disease compared with standalone techniques. Radiation dose to the patient is a concern in hybrid imaging because multiple scans are performed in one scanning session. 3D PET acquisition combined with the new low-dose CT protocols can reduce the doses significantly. Hybrid PET/CT scanners have also been utilized for anatomically-guided molecular imaging of plaque biology in the carotid vessels, aorta, and coronary vessels. This review summarizes the state-of-the-art hybrid imaging PET/CT instrumentation and advances in the image quality related to cardiac imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Koepfli P, Hany TF, Wyss CA, et al. CT attenuation correction for myocardial perfusion quantification using a PET/CT hybrid scanner. J Nucl Med. 2004;45:537–42.

    PubMed  Google Scholar 

  2. Dorbala S, Vangala D, Sampson U, et al. Value of vasodilator left ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic coronary artery disease: a 82Rb PET/CT study. J Nucl Med. 2007;48:349–58.

    PubMed  Google Scholar 

  3. Slomka PJ, Dey D, Duvall WL, et al. Advances in nuclear cardiac instrumentation with a view towards reduced radiation exposure. Curr Cardiol Rep. 2012;14:208–16.

    Article  PubMed  Google Scholar 

  4. Bettinardi V, Presotto L, Rapisarda E, et al. Physical performance of the new hybrid PET∕ CT Discovery-690. Med Phys. 2011;38:5394–411.

    Article  PubMed  CAS  Google Scholar 

  5. Surti S, Kuhn A, Werner ME, et al. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med. 2007;48:471–80.

    PubMed  Google Scholar 

  6. Jakoby B, Bercier Y, Conti M, et al. Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Phys Med Biol. 2011;56:2375–89.

    Article  PubMed  CAS  Google Scholar 

  7. Klein R, Beanlands RS, deKemp RA. Quantification of myocardial blood flow and flow reserve: technical aspects. J Nucl Cardiol. 2010;17:555–70.

    Article  PubMed  Google Scholar 

  8. Cui J-Y, Pratx G, Prevrhal S, Levin CS. Fully 3D list-mode time-of-flight PET image reconstruction on GPUs using CUDA. Med Phys. 2011;38:6775–86.

    Article  PubMed  Google Scholar 

  9. Pratx G, Surti S, Levin C. Fast list-mode reconstruction for time-of-flight PET using graphics hardware. IEEE Trans Nucl Sci. 2011;58:105–9.

    Article  CAS  Google Scholar 

  10. Esteves F, Nye J, Khan A, et al. Prompt-gamma compensation in Rb-82 myocardial perfusion 3D PET/CT. J Nucl Cardiol. 2010;17:247–53.

    Article  PubMed  Google Scholar 

  11. Jakoby BW, Bercier Y, Conti M, et al. Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Phys Med Biol. 2011;56:2375–89 [Epub 2011 Mar 22].

    Article  PubMed  CAS  Google Scholar 

  12. Lois C, Jakoby BW, Long MJ, et al. An assessment of the impact of incorporating time-of-flight information into clinical PET/CT imaging. J Nucl Med. 2010;51:237–45.

    Article  PubMed  Google Scholar 

  13. Tipnis S, Hu Z, Gagnon D, O’Donnell J. Time-of-flight PET for Rb-82 cardiac perfusion imaging. J Nucl Med. 2008;49 Suppl 1:74P.

    Google Scholar 

  14. Panin VY, Kehren F, Michel C, Casey M. Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging. 2006;25:907–21.

    Article  PubMed  Google Scholar 

  15. Akamatsu G, Ishikawa K, Mitsumoto K, et al. Improvement in PET/CT image quality with a combination of Point-Spread function and Time-of-Flight in relation to reconstruction parameters. J Nucl Med. 2012;53:1716–22.

    Article  PubMed  Google Scholar 

  16. Le Meunier L, Slomka P, Dey D, et al. Enhanced definition PET for cardiac imaging. J Nucl Cardiol. 2010;17:414–26.

    Article  PubMed  Google Scholar 

  17. Nakazato R, Berman DS, Dey D, et al. Automated quantitative Rb-82 3D PET/CT myocardial perfusion imaging: normal limits and correlation with invasive coronary angiography. J Nucl Cardiol. 2012;19:265–76.

    Article  PubMed  Google Scholar 

  18. Slomka PJ, Alexanderson E, Jacome R, et al. Comparison of clinical tools for measurements of regional stress and rest myocardial blood flow assessed with 13N-ammonia PET/CT. J Nucl Med. 2012;53:171–81.

    Article  PubMed  CAS  Google Scholar 

  19. Berman DS, Maddahi J, Tamarappoo B, et al. Phase II safety and clinical comparison with single-photon emission computed tomography myocardial perfusion imaging for detection of coronary artery disease Flurpiridaz F 18 Positron Emission Tomography. J Am Col Cardiol. 2013;61:469–77.

    Article  CAS  Google Scholar 

  20. Woo J, Tamarappoo B, Dey D, et al. Automatic 3D registration of dynamic stress and rest (82)Rb and flurpiridaz F 18 myocardial perfusion PET data for patient motion detection and correction. Med Phys. 2011;38:6313–26.

    Article  PubMed  CAS  Google Scholar 

  21. Kaster T, Mylonas I, Renaud JM, et al. Accuracy of low-dose rubidium-82 myocardial perfusion imaging for detection of coronary artery disease using 3D PET and normal database interpretation. J Nucl Cardiol. 2012;19:1135–45.

    Article  PubMed  Google Scholar 

  22. Zaidi H. Is radionuclide transmission scanning obsolete for dual-modality PET/CT systems? Eur J Nucl Med Mol Imaging. 2007;34:815–8.

    Article  PubMed  Google Scholar 

  23. Pan T, Mawlawi O, Nehmeh SA, et al. Attenuation correction of PET images with respiration-averaged CT images in PET/CT. J Nucl Med. 2005;46:1481–7.

    PubMed  Google Scholar 

  24. Bacharach SL. PET/CT attenuation correction: breathing lessons. J Nucl Med. 2007;48:677–9.

    Article  PubMed  Google Scholar 

  25. Gould KL, Pan T, Loghin C, et al. Frequent diagnostic errors in cardiac PET/CT due to misregistration of CT attenuation and emission PET images: a definitive analysis of causes, consequences, and corrections. J Nucl Med. 2007;48:1112–21.

    Article  PubMed  Google Scholar 

  26. Slomka PJ, Le Meunier L, Hayes SW, et al. Comparison of myocardial perfusion 82Rb PET performed with CT- and transmission CT-based attenuation correction. J Nucl Med. 2008;49:1992–8.

    Article  PubMed  Google Scholar 

  27. Nordberg P, Declerck J, Brady M. Pre-reconstruction rigid body registration for positron emission tomography: an initial validation against ground truth. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:5612–5.

  28. Alessio AM, Kohlmyer S, Branch K, et al. Cine CT for attenuation correction in cardiac PET/CT. J Nucl Med. 2007;48:794–801.

    Article  PubMed  Google Scholar 

  29. Fayad HJ, Lamare F, Le Rest CC, et al. Generation of 4-Dimensional CT images based on 4-dimensional PET–derived motion fields. J Nucl Med. 2013; (in press).

  30. Di Carli MF, Dorbala S, Hachamovitch R. Integrated cardiac PET-CT for the diagnosis and management of CAD. J Nucl Cardiol. 2006;13:139–44.

    Article  PubMed  Google Scholar 

  31. Danad I, Raijmakers PG, Appelman YE, et al. Hybrid imaging using quantitative H215O PET and CT-based coronary angiography for the detection of coronary artery disease. J Nucl Med. 2013;54:55–63.

    Article  PubMed  CAS  Google Scholar 

  32. Nakazato R, Dey D, Alexanderson E, et al. Automatic alignment of myocardial perfusion PET and 64-slice coronary CT angiography on hybrid PET/CT. J Nucl Cardiol. 2012;19:482–91.

    Article  PubMed  Google Scholar 

  33. Gaemperli O, Bengel FM, Kaufmann PA. Cardiac hybrid imaging. Eur Heart J. 2011;32:2100–8.

    Google Scholar 

  34. Flotats A, Knuuti J, Gutberlet M, et al. Hybrid cardiac imaging: SPECT/CT and PET/CT. A joint position statement by the European Association of Nuclear Medicine (EANM), the European Society of Cardiac Radiology (ESCR), and the European Council of Nuclear Cardiology (ECNC). Eur J Nucl Med Molec. Imaging. 2011;38:201–12.

    Google Scholar 

  35. Namdar M, Hany TF, Koepfli P, et al. Integrated PET/CT for the assessment of coronary artery disease: a feasibility study. J Nucl Med. 2005;46:930–5.

    PubMed  Google Scholar 

  36. Slomka PJ, Cheng VY, Dey D, et al. Quantitative analysis of myocardial perfusion SPECT anatomically guided by coregistered 64-slice coronary CT angiography. J Nucl Med. 2009;50:1621–30.

    Article  PubMed  Google Scholar 

  37. Kajander S, Joutsiniemi E, Saraste M, et al. Cardiac Positron Emission Tomography/Computed Tomography imaging accurately detects anatomically and functionally significant coronary artery disease: clinical perspective. Circulation. 2010;122:603–13.

    Article  PubMed  CAS  Google Scholar 

  38. Kajander S, Ukkonen H, Sipilä H, et al. Low radiation dose imaging of myocardial perfusion and coronary angiography with a hybrid PET/CT scanner. Clin Physiol Functional Imaging. 2009;29:81–8.

    Article  CAS  Google Scholar 

  39. Achenbach S, Goroll T, Seltmann M, et al. Detection of coronary artery stenoses by low-dose, prospectively ECG-triggered, high-pitch spiral coronary CT angiography. JACC Cardiovasc Imaging. 2011;4:328–37.

    Article  PubMed  Google Scholar 

  40. Hong C, Becker CR, Schoepf UJ, et al. Coronary artery calcium: absolute quantification in nonenhanced and contrast-enhanced multi–detector row CT studies. Radiology. 2002;223:474–80.

    Article  PubMed  Google Scholar 

  41. Schenker MP, Dorbala S, Hong ECT, et al. Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate likelihood of coronary artery disease. Circulation. 2008;117:1693–700.

    Article  PubMed  Google Scholar 

  42. Kim KP, Einstein AJ, Berrington de Gonzalez A. Coronary artery calcification screening: estimated radiation dose and cancer risk. Arch Int Med. 2009;169:1188.

    Article  Google Scholar 

  43. • Burkhard N, Herzog BA, Husmann L, et al. Coronary calcium score scans for attenuation correction of quantitative PET/CT 13 N-ammonia myocardial perfusion imaging. Eur J Nucl Med Mol Imaging. 2010;37:517–21. Demostrates the use of calcium scoring scans for attenuation correction on PET/CT scanner.

    Article  PubMed  Google Scholar 

  44. Einstein AJ, Johnson LL, Bokhari S, et al. Agreement of visual estimation of coronary artery calcium from low-dose CT attenuation correction scans in hybrid PET/CT and SPECT/CT with standard Agatston score. J Am Coll Cardiol. 2010;56:1914–21.

    Article  PubMed  Google Scholar 

  45. Mylonas I, Kazmi M, Fuller L, et al. Measuring coronary artery calcification using positron emission tomography-computed tomography attenuation correction images. Eur Heart J Cardiovasc Imaging. 2012;13:786–92.

    Article  PubMed  Google Scholar 

  46. Martinez-Möller A, Zikic D, Botnar RM, et al. Dual cardiac–respiratory gated PET: implementation and results from a feasibility study. Eur J Nucl Med Molec Imaging. 2007;34:1447–54.

    Article  Google Scholar 

  47. Büther F, Dawood M, Stegger L, et al. List mode–driven cardiac and respiratory gating in pet. J Nucl Med. 2009;50:674–81.

    Article  PubMed  Google Scholar 

  48. Slomka PJ, Nishina H, Berman DS, et al. “Motion-Frozen” display and quantification of myocardial perfusion. J Nucl Med. 2004;45:1128–34.

    PubMed  Google Scholar 

  49. Le Meunier L, Slomka PJ, Dey D, et al. Motion frozen (18)F-FDG cardiac PET. J Nucl Cardiol. 2011;18:259–66.

    Article  PubMed  Google Scholar 

  50. Le Meunier L, Slomka P, Fermin JS, et al. Motion frozen of dual gated (cardiac and respiratory) PET images. J Nucl Med. 2009;50 Suppl 2:1474 [Abstract].

    Google Scholar 

  51. Di Carli MF, Dorbala S, Meserve J, et al. Clinical myocardial perfusion PET/CT. J Nucl Med. 2007;48:783–93.

    Article  PubMed  Google Scholar 

  52. •• Senthamizhchelvan S, Bravo PE, Esaias C, et al. Human biodistribution and radiation dosimetry of 82Rb. J Nucl Med. 2010;51:1592–9. Presents revised radiation dosimetry of the 82Rb data.

    Article  PubMed  Google Scholar 

  53. Knuuti J. Integrated positron emission tomography/computed tomography (PET/CT) in coronary disease. Heart. 2009;95:1457–63.

    Article  PubMed  Google Scholar 

  54. Maddahi J, Schelbert H, Brunken R, Di Carli M. Role of thallium-201 and PET imaging in evaluation of myocardial viability and management of patients with coronary artery disease and left ventricular dysfunction. J Nucl Med. 1994;35:707–15.

    PubMed  CAS  Google Scholar 

  55. Vancraeynest D, Pasquet A, Roelants V, et al. Imaging the vulnerable plaque. J Am Coll Cardiol. 2011;57:1961–79.

    Article  PubMed  Google Scholar 

  56. Wykrzykowska JLS, Williams G, Parker JA, Palmer MR, Varkey S, Kolodny G, et al. Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med. 2009;50:563–8.

    Article  PubMed  Google Scholar 

  57. Rogers IS, Nasir K, Figueroa AL, et al. Feasibility of FDG imaging of the coronary arteries: comparison between acute coronary syndrome and stable angina. JACC Cardiovasc Imaging. 2010;3:388–97.

    Article  PubMed  Google Scholar 

  58. Cheng VY, Slomka PJ, Le Meunier L, et al. Coronary arterial 18F-FDG uptake by fusion of PET and coronary CT angiography at sites of percutaneous stenting for acute myocardial infarction and stable coronary artery disease. J Nucl Med. 2012;53:575–83.

    Article  PubMed  CAS  Google Scholar 

  59. Dweck MR, Chow MW, Joshi NV, et al. Coronary arterial 18F-sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol. 2012;59:1539–48.

    Article  PubMed  CAS  Google Scholar 

  60. Judenhofer MS, Wehrl HF, Newport DF, et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med. 2008;14:459–65.

    Article  PubMed  CAS  Google Scholar 

  61. Antoch G, Bockisch A. Combined PET/MRI: a new dimension in whole-body oncology imaging? Eur J Nucl Med Mol Imaging. 2009;36:113–20.

    Article  Google Scholar 

  62. Heiss W-D. The potential of PET/MR for brain imaging. Eur J Nucl Med Mol Imaging. 2009;36:105–12.

    Article  Google Scholar 

  63. Rischpler C, Nekolla SG, Dregely I, Schwaiger M. Hybrid PET/MR imaging of the heart: potential, initial experiences, and future prospects. J Nucl Med. 2013;54:402–15.

    Article  PubMed  CAS  Google Scholar 

  64. Anagnostopoulos C, Georgakopoulos A, Pianou N, Nekolla SG. Assessment of myocardial perfusion and viability by Positron Emission Tomography. Int J Cardiol. 2013; (in press).

  65. Hofmann M, Pichler B, Schölkopf B, Beyer T. Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging. 2009;36:93–104.

    Article  Google Scholar 

Download references

Conflict of Interest

Cedars-Sinai Medical Center receives royalties for the quantitative assessment of function, perfusion, and viability, a portion of which is distributed to the authors of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr J. Slomka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slomka, P.J., Berman, D.S. & Germano, G. State of the Art Hybrid Technology: PET/CT. Curr Cardiovasc Imaging Rep 6, 328–337 (2013). https://doi.org/10.1007/s12410-013-9208-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12410-013-9208-2

Keywords

Navigation