Skip to main content

Advertisement

Log in

Emerging Tracers for Nuclear Cardiac PET Imaging

  • Review
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Myocardial perfusion imaging using positron emission tomography (PET) has several advantages over single photon emission computed tomography (SPECT). The recent advances in SPECT technology have shown promise, but there is still a large need for PET in the clinical management of coronary artery disease (CAD). Especially, absolute quantification of myocardial blood flow (MBF) using PET is extremely important. In spite of considerable advances in the diagnosis of CAD, novel PET radiopharmaceuticals remain necessary for the diagnosis of CAD because clinical use of current cardiac radiotracers is limited by their physical characteristics, such as decay mode, emission energy, and half-life. Thus, the use of a radioisotope that has proper characteristics and a proper half-life to develop myocardial perfusion agents could overcome these limitations. In this review, the current state of cardiac PET and a general overview of novel 18F or 68Ga-labeled radiotracers, including their radiosynthesis, in vivo characterization, and evaluation, are provided. The future perspectives are discussed in terms of their potential usefulness based on new image analysis methods and hybrid imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Small GR, Wells RG, Schindler T, Chow BJ, Ruddy TD. Advances in cardiac SPECT and PET imaging: overcoming the challenges to reduce radiation exposure and improve accuracy. Can J Cardiol. 2013;29:275–84.

    Article  PubMed  Google Scholar 

  2. Ohira H, Mc Ardle B, Cocker MS, Dekemp RA, Dasilva JN, Beanlands RS. Current and future clinical applications of cardiac positron emission tomography. Circ J. 2013;77:836–48.

    Article  PubMed  Google Scholar 

  3. Gibbons RJ, Valeti US, Araoz PA, Jaffe AS. The quantification of infarct size. J Am Coll Cardiol. 2004;44:1533–42.

    Article  PubMed  Google Scholar 

  4. Knuuti J, Bengel FM. Positron emission tomography and molecular imaging. Heart. 2008;94:360–7.

    Article  PubMed  CAS  Google Scholar 

  5. Siegrist PT, Husmann L, Knabenhans M, Gaemperli O, Valenta I, Hoefflinghaus T, et al. 13N-ammonia myocardial perfusion imaging with a PET/CT scanner: impact on clinical decision making and cost-effectiveness. Eur J Nucl Med Mol Imaging. 2008;35:889–95.

    Article  PubMed  Google Scholar 

  6. Kim DY, Min JJ. Radiolabeled phosphonium salts as mitochondrial voltage sensors for positron emission tomography myocardial imaging agents. Nucl Med Mol Imaging. 2016;50:185–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Danad I, Raijmakers PG, Driessen RS, Leipsic J, Raju R, Naoum C, et al. Comparison of coronary CT angiography, SPECT, PET, and hybrid imaging for diagnosis of ischemic heart disease determined by fractional flow reserve. JAMA Cardiol. 2017;2:1100–7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lee JM, Kim CH, Koo BK, Hwang D, Park J, Zhang J, et al. Integrated myocardial perfusion imaging diagnostics improve detection of functionally significant coronary artery stenosis by 13N-ammonia positron emission tomography. Circ Cardiovasc Imaging. 2016;9:e004768.

    Article  PubMed  Google Scholar 

  9. Fiechter M, Ghadri JR, Gebhard C, Fuchs TA, Pazhenkottil AP, Nkoulou RN, et al. Diagnostic value of 13N-ammonia myocardial perfusion PET: added value of myocardial flow reserve. J Nucl Med. 2012;53:1230–4.

    Article  PubMed  CAS  Google Scholar 

  10. Herzog BA, Husmann L, Valenta I, Gaemperli O, Siegrist PT, Tay FM, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. J Am Coll Cardiol. 2009;54:150–6.

    Article  PubMed  Google Scholar 

  11. Taqueti VR, Hachamovitch R, Murthy VL, Naya M, Foster CR, Hainer J, et al. Global coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity and modifies the effect of early revascularization. Circulation. 2015;131:19–27.

    Article  PubMed  Google Scholar 

  12. Cho SG, Park KS, Kim J, Kang SR, Song HC, Kim JH, et al. Coronary flow reserve and relative flow reserve measured by N-13 ammonia PET for characterization of coronary artery disease. Ann Nucl Med. 2017;31:144–52.

    Article  PubMed  CAS  Google Scholar 

  13. Engbers EM, Timmer JR, Mouden M, Knollema S, Jager PL, Ottervanger JP. Prognostic value of myocardial perfusion imaging with CZT SPECT camera in patients suspected for coronary artery disease. J Nucl Med. 2017;58:1459–63.

    Article  PubMed  Google Scholar 

  14. Chikamori T, Hida S, Tanaka N, Igarashi Y, Yamashita J, Shiba C, et al. Diagnostic performance of a cadmium-zinc-telluride single-photon emission computed tomography system with low-dose technetium-99m as assessed by fractional flow reserve. Circ J. 2016;80:1217–24.

    Article  PubMed  CAS  Google Scholar 

  15. Wells RG, Timmins R, Klein R, Lockwood J, Marvin B, deKemp RA, et al. Dynamic SPECT measurement of absolute myocardial blood flow in a porcine model. J Nucl Med. 2014;55:1685–91.

    Article  PubMed  CAS  Google Scholar 

  16. Mouden M, Timmer JR, Ottervanger JP, Reiffers S, Oostdijk AH, Knollema S, et al. Impact of a new ultrafast CZT SPECT camera for myocardial perfusion imaging: fewer equivocal results and lower radiation dose. Eur J Nucl Med Mol Imaging. 2012;39:1048–55.

    Article  PubMed  Google Scholar 

  17. Songy B, Lussato D, Guernou M, Queneau M, Geronazzo R. Comparison of myocardial perfusion imaging using thallium-201 between a new cadmium-zinc-telluride cardiac camera and a conventional SPECT camera. Clin Nucl Med. 2011;36:776–80.

    Article  PubMed  Google Scholar 

  18. Garcia EV. Are SPECT measurements of myocardial blood flow and flow reserve ready for clinical use? Eur J Nucl Med Mol Imaging. 2014;41:2291–3.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nkoulou R, Fuchs TA, Pazhenkottil AP, Kuest SM, Ghadri JR, Stehli J, et al. Absolute myocardial blood flow and flow reserve assessed by gated SPECT with cadmium-zinc-telluride detectors using 99mTc-tetrofosmin: head-to-head comparison with 13N-ammonia PET. J Nucl Med. 2016;57:1887–92.

    Article  PubMed  CAS  Google Scholar 

  20. Nekolla SG, Reder S, Saraste A, Higuchi T, Dzewas G, Preissel A, et al. Evaluation of the novel myocardial perfusion positron-emission tomography tracer 18F-BMS-747158-02: comparison to 13N-ammonia and validation with microspheres in a pig model. Circulation. 2009;119:2333–42.

    Article  PubMed  CAS  Google Scholar 

  21. Huisman MC, Higuchi T, Reder S, Nekolla SG, Poethko T, Wester HJ, et al. Initial characterization of an 18F-labeled myocardial perfusion tracer. J Nucl Med. 2008;49:630–6.

    Article  PubMed  Google Scholar 

  22. Yu M, Guaraldi MT, Mistry M, Kagan M, McDonald JL, Drew K, et al. BMS-747158-02: a novel PET myocardial perfusion imaging agent. J Nucl Cardiol. 2007;14:789–98.

    Article  PubMed  CAS  Google Scholar 

  23. Yalamanchili P, Wexler E, Hayes M, Yu M, Bozek J, Kagan M, et al. Mechanism of uptake and retention of F-18 BMS-747158-02 in cardiomyocytes: a novel PET myocardial imaging agent. J Nucl Cardiol. 2007;14:782–8.

    Article  PubMed  Google Scholar 

  24. Heller JM GV, Udelson JE, Beanlands R, Knuuti J, Bateman TM, Berman DS, et al. Improved assessment of CAD in women with flurpiridaz F-18 PET myocardial perfusion imaging: results of subset analysis of the flurpiridaz F-18 phase 3 study. Circulation. 2015;132:A18022.

    Google Scholar 

  25. Bateman TMMJ, Udelson J, Beanlands R, Knuuti J, Heller GV, Berman D, et al. Improved assessment of CAD in obese subjects with flurpiridaz F-18 PET myocardial perfusion imaging: a subset analysis of the flurpiridaz F-18 301 phase 3 study. J Am Coll Cardiol. 2016;67:1578.

    Article  Google Scholar 

  26. Marshall RC, Powers-Risius P, Reutter BW, O'Neil JP, La Belle M, Huesman RH, et al. Kinetic analysis of 18F-fluorodihydrorotenone as a deposited myocardial flow tracer: comparison to 201Tl. J Nucl Med. 2004;45:1950–9.

    PubMed  CAS  Google Scholar 

  27. Marshall RC, Powers-Risius P, Reutter BW, Taylor SE, VanBrocklin HF, Huesman RH, et al. Kinetic analysis of 125I-iodorotenone as a deposited myocardial flow tracer: comparison with 99mTc-sestamibi. J Nucl Med. 2001;42:272–81.

    PubMed  CAS  Google Scholar 

  28. Summerhayes IC, Lampidis TJ, Bernal SD, Nadakavukaren JJ, Nadakavukaren KK, Shepherd EL, et al. Unusual retention of rhodamine 123 by mitochondria in muscle and carcinoma cells. Proc Natl Acad Sci U S A. 1982;79:5292–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Chen LB. Mitochondrial membrane potential in living cells. Annu Rev Cell Biol. 1988;4:155–81.

    Article  PubMed  CAS  Google Scholar 

  30. Madar I, Ravert H, Dipaula A, Du Y, Dannals RF, Becker L. Assessment of severity of coronary artery stenosis in a canine model using the PET agent 18F-fluorobenzyl triphenyl phosphonium: comparison with 99mTc-tetrofosmin. J Nucl Med. 2007;48:1021–30.

    Article  PubMed  CAS  Google Scholar 

  31. Min JJ, Biswal S, Deroose C, Gambhir SS. Tetraphenylphosphonium as a novel molecular probe for imaging tumors. J Nucl Med. 2004;45:636–43.

    PubMed  CAS  Google Scholar 

  32. Jacobson O, Abourbeh G, Tsvirkun D, Mishani E. Rat imaging and in vivo stability studies using [11C]dimethyl-diphenyl ammonium, a candidate agent for PET-myocardial perfusion imaging. Nucl Med Biol. 2013;40:967–73.

    Article  PubMed  CAS  Google Scholar 

  33. Ilovich O, Abourbeh G, Bocher M, Freedman N, Billauer H, Dotan S, et al. Structure-activity relationship and preclinical evaluation of carbon-11 labeled ammonium salts as PET myocardial perfusion imaging agents. Mol Imaging Biol. 2012;14:625–36.

    Article  PubMed  Google Scholar 

  34. Ilovich O, Billauer H, Dotan S, Freedman NM, Bocher M, Mishani E. Novel and simple carbon-11 labeled ammonium salts as PET agents for myocardial perfusion imaging. Mol Imaging Biol. 2011;13:128–39.

    Article  PubMed  Google Scholar 

  35. Chen S, Zhao Z, Zhang Y, Fang W, Lu J, Zhang X. Effect of methoxy group position on biological properties of 18F-labeled benzyl triphenylphosphonium cations. Nucl Med Biol. 2017;49:16–23.

    Article  PubMed  CAS  Google Scholar 

  36. Tominaga T, Ito H, Ishikawa Y, ren I, Ishiwata K, Furumoto S. Radiosynthesis and preliminary biological evaluation of a new 18F-labeled triethylene glycol derivative of triphenylphosphonium. J Label Compd Radiopharm. 2016;59:117–23.

    Article  CAS  Google Scholar 

  37. Kim DY, Kim HS, Reder S, Zheng JH, Herz M, Higuchi T, et al. Comparison of 18F-labeled fluoroalkylphosphonium cations with 13N-NH3 for PET myocardial perfusion imaging. J Nucl Med. 2015;56:1581–6.

    Article  PubMed  CAS  Google Scholar 

  38. Kim DY, Kim HS, Min JJ. Radiosynthesis and evaluation of 18F-labeled aliphatic phosphonium cations as a myocardial imaging agent for positron emission tomography. Nucl Med Commun. 2015;36:747–54.

    Article  PubMed  CAS  Google Scholar 

  39. Kim DY, Kim HS, Jang HY, Kim JH, Bom HS, Min JJ. Comparison of the cardiac microPET images obtained using [18F]FPTP and [13N]NH3 in rat myocardial infarction models. ACS Med Chem Lett. 2014;5:1124–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Haslop A, Wells L, Gee A, Plisson C, Long N. One-pot multi-tracer synthesis of novel 18F-labeled PET imaging agents. Mol Pharm. 2014;11:3818–22.

    Article  PubMed  CAS  Google Scholar 

  41. Kim DY, Kim HS, Le UN, Jiang SN, Kim HJ, Lee KC, et al. Evaluation of a mitochondrial voltage sensor, (18F-fluoropentyl)triphenylphosphonium cation, in a rat myocardial infarction model. J Nucl Med. 2012;53:1779–85.

    Article  PubMed  CAS  Google Scholar 

  42. Kim DY, Kim HJ, Yu KH, Min JJ. Synthesis of 18F-labeled (2-(2-fluoroethoxy)ethyl)tris(4-methoxyphenyl)phosphonium cation as a potential agent for positron emission tomography myocardial imaging. Nucl Med Biol. 2012;39:1093–8.

    Article  PubMed  CAS  Google Scholar 

  43. Kim DY, Kim HJ, Yu KH, Min JJ. Synthesis of 18F-labeled (6-fluorohexyl)triphenylphosphonium cation as a potential agent for myocardial imaging using positron emission tomography. Bioconjug Chem. 2012;23:431–7.

    Article  PubMed  CAS  Google Scholar 

  44. Kim DY, Kim HJ, Yu KH, Min JJ. Synthesis of 18F-labeled (2-(2-fluoroethoxy)ethyl)triphenylphosphonium cation as a potential agent for myocardial imaging using positron emission tomography. Bioorg Med Chem Lett. 2012;22:319–22.

    Article  PubMed  CAS  Google Scholar 

  45. Shoup TM, Elmaleh DR, Brownell AL, Zhu A, Guerrero JL, Fischman AJ. Evaluation of (4-[18F]Fluorophenyl)triphenylphosphonium ion. A potential myocardial blood flow agent for PET. Mol Imaging Biol. 2011;13:511–7.

    Article  PubMed  Google Scholar 

  46. Madar I, Ravert H, Nelkin B, Abro M, Pomper M, Dannals R, et al. Characterization of membrane potential-dependent uptake of the novel PET tracer 18F-fluorobenzyl triphenylphosphonium cation. Eur J Nucl Med Mol Imaging. 2007;34:2057–65.

    Article  PubMed  CAS  Google Scholar 

  47. Kim DY, Yu KH, Bom HS, Min JJ. Synthesis of (4-[18F]fluorophenyl)triphenylphosphonium as a mitochondrial voltage sensor for PET. Nucl Med Mol Imaging. 2007;41:561–5.

    Google Scholar 

  48. Madar I, Ravert HT, Du Y, Hilton J, Volokh L, Dannals RF, et al. Characterization of uptake of the new PET imaging compound 18F-fluorobenzyl triphenyl phosphonium in dog myocardium. J Nucl Med. 2006;47:1359–66.

    PubMed  CAS  Google Scholar 

  49. Cheng Z, Subbarayan M, Chen X, Gambhir SS. Synthesis of (4-[18F]fluorophenyl)triphenylphosphonium as a potential imaging agent for mitochondrial dysfunction. J Label Compd Radiopharm. 2005;48:131–7.

    Article  CAS  Google Scholar 

  50. Zhou Y, Liu S. 64Cu-labeled phosphonium cations as PET radiotracers for tumor imaging. Bioconjug Chem. 2011;22:1459–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Demura M, Kamo N, Kobatake Y. Binding of lipophilic cations to the liposomal membrane: thermodynamic analysis. Biochim Biophys Acta. 1987;820:303–8.

    Article  Google Scholar 

  52. Ono A, Miyauchi S, Demura M, Asakura T, Kamo N. Activation energy for permeation of phosphonium cations through phospholipid bilayer membrane. Biochemistry. 1994;33:4312–8.

    Article  PubMed  CAS  Google Scholar 

  53. Ravert HT, Madar I, Dannals RF. Radiosynthesis of 3-[18F]fluoropropyl and 4-[18F]fluorobenzyl triarylphosphonium ions. J Label Compd Radiopharm. 2004;47:469–76.

    Article  CAS  Google Scholar 

  54. Zhao Z, Yu Q, Mou T, Liu C, Yang W, Fang W, et al. Highly efficient one-pot labeling of new phosphonium cations with fluorine-18 as potential PET agents for myocardial perfusion imaging. Mol Pharm. 2014;11:3823–31.

    Article  PubMed  CAS  Google Scholar 

  55. Haslop A, Gee A, Plisson C, Long N. Fully automated radiosynthesis of [1-(2-[18F]fluoroethyl),1H[1,2,3]triazole 4-ethylene] triphenylphosphonium bromide as a potential positron emission tomography tracer for imaging apoptosis. J Labelled Comp Radiopharm. 2013;56(6):313.

    Article  PubMed  CAS  Google Scholar 

  56. Croteau E, Benard F, Bentourkia M, Rousseau J, Paquette M, Lecomte R. Quantitative myocardial perfusion and coronary reserve in rats with 13N-ammonia and small animal PET: impact of anesthesia and pharmacologic stress agents. J Nucl Med. 2004;45:1924–30.

    PubMed  CAS  Google Scholar 

  57. Pagou M, Zerizer I, Al-Nahhas A. Can gallium-68 compounds partly replace 18F-FDG in PET molecular imaging? Hell J Nucl Med. 2009;12:102–5.

    PubMed  Google Scholar 

  58. Yang BY, Jeong JM, Kim YJ, Choi JY, Lee YS, Lee DS, et al. Formulation of 68Ga BAPEN kit for myocardial positron emission tomography imaging and biodistribution study. Nucl Med Biol. 2010;37:149–55.

    Article  PubMed  CAS  Google Scholar 

  59. Tsang BW, Mathias CJ, Green MA. A gallium-68 radiopharmaceutical that is retained in myocardium: 68Ga[(4,6-MeO2sal)2BAPEN]+. J Nucl Med. 1993;34:1127–31.

    PubMed  CAS  Google Scholar 

  60. Tsang BW, Mathias CJ, Fanwick PE, Green MA. Structure-distribution relationships for metal-labeled myocardial imaging agents: comparison of a series of cationic gallium (III) complexes with hexadentate bis(salicylaldimine) ligands. J Med Chem. 1994;37:4400–6.

    Article  PubMed  CAS  Google Scholar 

  61. Cutler CS, Giron MC, Reichert DE, Snyder AZ, Herrero P, Anderson CJ, et al. Evaluation of gallium-68 tris(2-mercaptobenzyl)amine: a complex with brain and myocardial uptake. Nucl Med Biol. 1999;26:305–16.

    Article  PubMed  CAS  Google Scholar 

  62. Plossl K, Chandra R, Qu W, Lieberman BP, Kung MP, Zhou R, et al. A novel gallium bisaminothiolate complex as a myocardial perfusion imaging agent. Nucl Med Biol. 2008;35:83–90.

    Article  PubMed  CAS  Google Scholar 

  63. Tarkia M, Saraste A, Saanijoki T, Oikonen V, Vahasilta T, Strandberg M, et al. Evaluation of 68Ga-labeled tracers for PET imaging of myocardial perfusion in pigs. Nucl Med Biol. 2012;39:715–23.

    Article  PubMed  CAS  Google Scholar 

  64. Sharma V, Sivapackiam J, Harpstrite SE, Prior JL, Gu H, Rath NP, et al. A generator-produced gallium-68 radiopharmaceutical for PET imaging of myocardial perfusion. PLoS One. 2014;9:e109361.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Tillmanns J, Schneider M, Fraccarollo D, Schmitto JD, Langer F, Richter D, et al. PET imaging of cardiac wound healing using a novel 68Ga-labeled NGR probe in rat myocardial infarction. Mol Imaging Biol. 2015;17:76–86.

    Article  PubMed  CAS  Google Scholar 

  66. Menichetti L, Kusmic C, Panetta D, Arosio D, Petroni D, Matteucci M, et al. MicroPET/CT imaging of αvβ3 integrin via a novel 68Ga-NOTA-RGD peptidomimetic conjugate in rat myocardial infarction. Eur J Nucl Med Mol Imaging. 2013;40:1265–74.

    Article  PubMed  CAS  Google Scholar 

  67. Rischpler C, Nekolla SG, Kossmann H, Dirschinger RJ, Schottelius M, Hyafil F, et al. Upregulated myocardial CXCR4-expression after myocardial infarction assessed by simultaneous GA-68 pentixafor PET/MRI. J Nucl Cardiol. 2016;23:131–3.

    Article  PubMed  Google Scholar 

  68. Gronman M, Tarkia M, Kiviniemi T, Halonen P, Kuivanen A, Savunen T, et al. Imaging of alphavbeta3 integrin expression in experimental myocardial ischemia with [68Ga]NODAGA-RGD positron emission tomography. J Transl Med. 2017;15:144.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kiugel M, Kyto V, Saanijoki T, Liljenback H, Metsala O, Stahle M, et al. Evaluation of 68Ga-labeled peptide tracer for detection of gelatinase expression after myocardial infarction in rat. J Nucl Cardiol. 2016;

  70. Jindal A, Mathur A, Pandey U, Sarma HD, Chaudhari P, Dash A. Development of 68Ga-labeled fatty acids for their potential use in cardiac metabolic imaging. J Labelled Comp Radiopharm. 2014;57:463–9.

    Article  PubMed  CAS  Google Scholar 

  71. Jain A, Mathur A, Pandey U, Sarma HD, Dash A. 68Ga labeled fatty acids for cardiac metabolic imaging: influence of different bifunctional chelators. Bioorg Med Chem Lett. 2016;26:5785–91.

    Article  PubMed  CAS  Google Scholar 

  72. Hsiao YM, Mathias CJ, Wey SP, Fanwick PE, Green MA. Synthesis and biodistribution of lipophilic and monocationic gallium radiopharmaceuticals derived from N,N’-bis(3-aminopropyl)-N,N’-dimethylethylenediamine: potential agents for PET myocardial imaging with 68Ga. Nucl Med Biol. 2009;36:39–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Green MA, Mathias CJ, Neumann WL, Fanwick PE, Janik M, Deutsch EA. Potential gallium-68 tracers for imaging the heart with PET: evaluation of four gallium complexes with functionalized tripodal tris(salicylaldimine) ligands. J Nucl Med. 1993;34:228–33.

    PubMed  CAS  Google Scholar 

  74. Kung HF, Liu BL, Mankoff D, Kung MP, Billings JJ, Francesconi L, et al. A new myocardial imaging agent: synthesis, characterization, and biodistribution of gallium-68-BAT-TECH. J Nucl Med. 1990;31:1635–40.

    PubMed  CAS  Google Scholar 

  75. Bellis SL. Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials. 2011;32:4205–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Spinale FG, Janicki JS, Zile MR. Membrane-associated matrix proteolysis and heart failure. Circ Res. 2013;112:195–208.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Rohde LE, Ducharme A, Arroyo LH, Aikawa M, Sukhova GH, Lopez-Anaya A, et al. Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation. 1999;99:3063–70.

    Article  PubMed  CAS  Google Scholar 

  78. Knapp FF Jr, Kropp J. Iodine-123-labelled fatty acids for myocardial single-photon emission tomography: current status and future perspectives. Eur J Nucl Med. 1995;22:361–81.

    Article  PubMed  CAS  Google Scholar 

  79. Schwaiger M, Hicks R. The clinical role of metabolic imaging of the heart by positron emission tomography. J Nucl Med. 1991;32:565–78.

    PubMed  CAS  Google Scholar 

  80. Trivieri MG, Dweck MR, Abgral R, Robson PM, Karakatsanis NA, Lala A, et al. 18F-Sodium fluoride PET/MR for the assessment of cardiac amyloidosis. J Am Coll Cardiol. 2016;68:2712–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Lee SP, Lee ES, Choi H, Im HJ, Koh Y, Lee MH, et al. 11C-Pittsburgh B PET imaging in cardiac amyloidosis. JACC Cardiovasc Imaging. 2015;8:50–9.

    Article  PubMed  Google Scholar 

  82. Dorbala S, Vangala D, Semer J, Strader C, Bruyere JR Jr, Di Carli MF, et al. Imaging cardiac amyloidosis: a pilot study using 18F-florbetapir positron emission tomography. Eur J Nucl Med Mol Imaging. 2014;41:1652–62.

    Article  PubMed  CAS  Google Scholar 

  83. Law WP, Wang WY, Moore PT, Mollee PN, Ng AC. Cardiac amyloid imaging with 18F-florbetaben PET: a pilot study. J Nucl Med. 2016;57:1733–9.

    Article  PubMed  CAS  Google Scholar 

  84. Schwaiger M, Melin J. Cardiological applications of nuclear medicine. Lancet. 1999;354:661–6.

    Article  PubMed  CAS  Google Scholar 

  85. Gormsen LC, Haraldsen A, Kramer S, Dias AH, Kim WY, Borghammer P. A dual tracer 68Ga-DOTANOC PET/CT and 18F-FDG PET/CT pilot study for detection of cardiac sarcoidosis. EJNMMI Res. 2016;6:52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Birnie DH, Sauer WH, Bogun F, Cooper JM, Culver DA, Duvernoy CS, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm. 2014;11:1304–23.

    Article  Google Scholar 

  87. Ishida Y, Yoshinaga K, Miyagawa M, Moroi M, Kondoh C, Kiso K, et al. Recommendations for 18F-fluorodeoxyglucose positron emission tomography imaging for cardiac sarcoidosis: Japanese Society of Nuclear Cardiology recommendations. Ann Nucl Med. 2014;28:393–403.

    Article  PubMed  Google Scholar 

  88. Osborne MT, Hulten EA, Singh A, Waller AH, Bittencourt MS, Stewart GC, et al. Reduction in 18F-fluorodeoxyglucose uptake on serial cardiac positron emission tomography is associated with improved left ventricular ejection fraction in patients with cardiac sarcoidosis. J Nucl Cardiol. 2014;21:166–74.

    Article  PubMed  Google Scholar 

  89. Ishiyama M, Soine LA, Vesselle HJ. Semi-quantitative metabolic values on FDG PET/CT including extracardiac sites of disease as a predictor of treatment course in patients with cardiac sarcoidosis. EJNMMI Res. 2017;7:67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Hanneman K, Kadoch M, Guo HH, Jamali M, Quon A, Iagaru A, et al. Initial experience with simultaneous 18F-FDG PET/MRI in the evaluation of cardiac sarcoidosis and myocarditis. Clin Nucl Med. 2017;42:e328-e34.

    Article  Google Scholar 

  91. Lucke C, Oppolzer B, Werner P, Foldyna B, Lurz P, Jochimsen T, et al. Comparison of volumetric and functional parameters in simultaneous cardiac PET/MR: feasibility of volumetric assessment with residual activity from prior PET/CT. Eur Radiol. 2017;27:5146–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B03029055 and 2016R1D1A3B01006631).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Yeon Kim or Hee-Seung Bom.

Ethics declarations

Conflict of Interest

Dong-Yeon Kim, Sang-Geon Cho and Hee Seung Bom declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, DY., Cho, SG. & Bom, HS. Emerging Tracers for Nuclear Cardiac PET Imaging. Nucl Med Mol Imaging 52, 266–278 (2018). https://doi.org/10.1007/s13139-018-0521-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-018-0521-1

Keywords

Navigation