Skip to main content
Log in

Quantification of myocardial blood flow and flow reserve: Technical aspects

  • Review Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

References

  1. Bateman T, Heller G, McGhie A, Friedman J, Case J. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial. J Nucl Cardiol 2006;13:24-33.

    Article  PubMed  Google Scholar 

  2. Go R, Marwick T, MacIntyre W, Saha G, Neumann D, Underwood D, Simpfendorfer C. A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J Nucl Med 1990;31:1899-905.

    CAS  PubMed  Google Scholar 

  3. Stewart R, Schwaiger M, Molina E, Popma J, Gacioch G, Kalus M, Squicciarini S, al-Aouar Z, Schork A, Kuhl D. Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease. Am J Cardiol 1999;67:1303-10.

    Article  Google Scholar 

  4. Sampson U, Dorbala S, Limaye A, Kwong R, Di Carli M. Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease. J Am Coll Cardiol 2007;49:1052-8.

    Article  CAS  PubMed  Google Scholar 

  5. Herrero P, Markham J, Shelton M, Weinheimer C, Bergmann S. Noninvasive quantification of regional myocardial perfusion with rubidium-82 and positron emission tomography. Exploration of a mathematical model. Circulation 1990;82:1377-86.

    CAS  PubMed  Google Scholar 

  6. Herrero P, Markham J, Shelton ME, Bergmann SR. Implementation and evaluation of a two-compartment model for quantification of myocardial perfusion with rubidium-82 and positron emission tomography. Circ Res 1992;70:496-507.

    CAS  PubMed  Google Scholar 

  7. Yoshinaga K, Katoh C, Noriyasu K, Iwado Y, Furuyama H, Ito Y, Kuge Y, Kohya T, Kitabatake A, Tamaki N. Reduction of coronary flow reserve in areas with and without ischemia on stress perfusion imaging in patients with coronary artery disease: A study using oxygen 15-labeled water PET. J Nucl Cardiol 2003;10:275-83.

    Article  PubMed  Google Scholar 

  8. Parkash R, deKemp RA, Ruddy TD, Kitsikis A, Hart R, Beauschene L, Williams K, Davies RA, Labinaz M, Beanlands RSB. Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol 2004;11:440-9.

    Article  CAS  PubMed  Google Scholar 

  9. Gould KL. Quantification of coronary artery stenosis in vivo. Circ Res 1985;57:341-53.

    CAS  PubMed  Google Scholar 

  10. deKemp RA, Yoshinaga K, Beanlands RSB. Will 3-dimensional PET-CT enable the routine quantification of myocardial blood flow? J Nucl Cardiol 2007;14:380-97.

    Article  PubMed  Google Scholar 

  11. Hutchins GD, Schwaiger M, Rosenspire KC, Krivokapich J, Schelbert H, Kuhl DE. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol 1990;15:1032-42.

    Article  CAS  PubMed  Google Scholar 

  12. Gerwitz H, Skopicki HA, Abraham SA, Castano H, Dinsmore RE, Alpert NM, Fischman AJ. Quantitative PET measurements of regional myocardial blood flow: Observations in humans with ischemic heart disease. Cardiology 1997;88:62-70.

    Article  Google Scholar 

  13. Dayanikli F, Grambow D, Muzik O, Mosca L, Rubenfire M, Schwaiger M. Early detection of abnormal coronary flow reserve in asymptomatic men at high risk for coronary artery disease using positron emission tomography. Circulation 1994;90:808-17.

    CAS  PubMed  Google Scholar 

  14. Yoshinaga K, Tamaki N, Ruddy TD, deKemp RA, Beanlands RSB. Evaluation of myocardial perfusion. In: Wahl RL, editor. Principles and practice of PET and PET/CT, ch. 11.1, 2nd ed. Philadelphia, PA, USA: Lippincott Williams & Wilkins; 2009. p. 541-64.

  15. Schindler TH, Nitzsche EU, Schelbert HR, Olschewski M, Sayre J, Mix M, Brink I, Zhang X-L, Kreissl M, Magosaki N, Just H, Solzbach U. Positron emission tomography-measured abnormal responses of myocardial blood flow to sympathetic stimulation are associated with the risk of developing cardiovascular events. J Am Coll Cardiol 2005;45:1505-12.

    Article  PubMed  Google Scholar 

  16. Matrougui K. Diabetes and microvascular pathophysiology: Role of epidermal growth factor receptor tyrosine kinase. Diabetes Metab Res Rev 2010;26:13-6.

    Article  PubMed  Google Scholar 

  17. Han B, Baliga R, Huang H, Giannone PJ, Bauer JA. Decreased cardiac expression of vascular endothelial growth factor and redox imbalance in murine diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 2009;297:H829-35.

    Article  CAS  PubMed  Google Scholar 

  18. Fioretto P, Dodson PM, Ziegler D, Rosenson RS. Residual microvascular risk in diabetes: Unmet needs and future directions. Nat Rev Endocrinol 2010;6:19-25.

    Article  PubMed  Google Scholar 

  19. Leppo JA, Meerdink DJ. Comparison of the myocardial uptake of a technetium-labeled isonitrile analogue and thallium. Circ Res 1989;65:632-9.

    CAS  PubMed  Google Scholar 

  20. Yu M, Guaraldi MT, Mistry M, Kagan M, McDonald JL, Drew K, Radeke H, Azure M, Purohit A, Casebier DS, Robinson SP. BMS-747158-02: A novel PET myocardial perfusion imaging agent. J Nucl Cardiol 2007;14:789-98.

    Article  CAS  PubMed  Google Scholar 

  21. Huisman MC, Higuchi T, Reder S, Nekolla SG, Poethko T, Wester H-J, Ziegler SI, Casebier DS, Robinson SP, Schwaiger M. Initial characterization of an 18F-labeled myocardial perfusion tracer. J Nucl Med 2008;49:630-6.

    Article  PubMed  Google Scholar 

  22. deKemp RA, Ruddy TD, Hewitt T, Dalipaj MM, Aung MT, Beanlands RSB. Detection of serial changes in absolute myocardial perfusion with 82Rb PET. J Nucl Med 2000;41:1426-35.

    CAS  PubMed  Google Scholar 

  23. Alvarez-Diez TM, de Kemp RA, Beanlands RS, Vincent J. Manufacture of strontium-82/rubidium-82 generators and quality control of rubidium-82 chloride for myocardial perfusion imaging in patients using positron emission tomography. Appl Radiat Isot 1999;50:1015-23.

    Article  CAS  PubMed  Google Scholar 

  24. Epstein NJ, Benelfassi A, Beanlands RS, deKemp RA. A 82Rb infusion system for quantitative perfusion imaging in 3D PET. App Radiat Isot 2004;60:921-7.

    Article  CAS  Google Scholar 

  25. Klein R, Adler A, Beanlands RS, deKemp RA. Precision-controlled elution of a 82Sr/82Rb generator for cardiac perfusion imaging with positron emission tomography. Phys Med Biol 2007;52:659-73.

    Article  CAS  PubMed  Google Scholar 

  26. Valentin J. Radiation dose to patients from radiopharmaceuticals: (Addendum 2 to ICRP Publication 53) ICRP Publication 80. Annals of the ICRP 1998;28(3):1-130.

    Article  Google Scholar 

  27. Ryan JW, Harper PV, Stark VS, Peterson EL, Lathrop KA. Radiation absorbed dose estimate for rubidium-82 determined from in vivo measurements in human subjects. In: Proc 4th International Radiopharm Dosimetry Symposium, Oak Ridge Conference 851113; 1986, p. 346-58.

  28. Hunter C, Ziadi M, Etele J, Hill J, Beanlands R, deKemp R. New effective dose estimates for Rubidium-82 based on dynamic PET/CT imaging in humans. J Nucl Med 2010;51(S2):1469.

    Google Scholar 

  29. Mullani NA, Goldstein RA, Gould KL, Marani SK, Fisher DJ, O’Brien HA, Loberg MD. Myocardial perfusion with rubidium-82. I. Measurement of extraction fraction and flow with external detectors. J Nucl Med 1983;24:898-906.

    CAS  PubMed  Google Scholar 

  30. Mullani N, Gould K. First-pass measurements of regional blood flow with external detectors. J Nucl Med 1983;24:577-81.

    CAS  PubMed  Google Scholar 

  31. Ziegler W, Goresky C. Kinetics of rubidium uptake in the working dog heart. Circ Res 1971;29:208-20.

    CAS  PubMed  Google Scholar 

  32. Weinberg IN, Huang SC, Hoffman EJ, Araujo L, Nienaber C, Grover-McKay M, Dahlbom M, Schelbert H. Validation of PET-acquired input functions for cardiac studies. J Nucl Med 1988;29:241-7.

    CAS  PubMed  Google Scholar 

  33. Lekx KS, deKemp RA, Beanlands RSB, Wisenberg G, Wells RG, Stodilka RZ, Lortie M, Klein R, Zabel P, Kovacs MS, Sykes J, Prato FS. Quantification of regional myocardial blood flow in a canine model of stunned and infarcted myocardium: Comparison of rubidium-82 positron emission tomography with microspheres. Nucl Med Commun 2010;31:67-74.

    Article  CAS  PubMed  Google Scholar 

  34. Prior J, Allenbach G, Valenta I, Modolo L, Kosinski M, Malterre J, Burger C, Verdun F, Bischof Delaloye A, Kaufmann P. Myocardial blood flow quantitation using Rb-82: Validation to O-15-water in healthy volunteers and CAD patients. J Nucl Med 2008;49:74P.

    Google Scholar 

  35. Lortie M, Beanlands RSB, Yoshinaga K, Klein R, DaSilva JN, deKemp RA. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Molec Imag 2007;34:1765-74.

    Article  Google Scholar 

  36. Klein R, Renaud JM, Ziadi MC, Thorn SL, Adler A, Beanlands RSB, deKemp RA. Intra- and inter-operator repeatability of myocardial blood flow and myocardial flow reserve measurements using rubidium-82 PET and a highly automated analysis program. J Nucl Cardiol. doi:10.1007/s12350-010-9225-3.

  37. Wyss CA, Koepfli P, Mikolajczyk K, Burger C, von Schulthess GK, Kaufmann PA. Bicycle exercise stress in PET for assessment of coronary flow reserve—Repeatability and comparison with adenosine stress. J Nucl Med 2003;44:146-54.

    PubMed  Google Scholar 

  38. Performance measurements of Positron Emission Tomographs (PETs) by the Association of Electrical and Medical Equipment Manufacturers, www.nema.org, 2010.

  39. deKemp RA, Klein R, Renaud J, Alghamdi A, Lortie M, DaSilva JN, Beanlands RS. 3D list-mode cardiac PET for simultaneous quantification of myocardial blood flow and ventricular function. In: Nucl Sci Symp and Med Imag Conf Record; 2008. p. 5215-8.

  40. Hsu B, Casey ME, Watson CC, Bateman TM, Case JA. Validation of Prompt Gamma Correction for 3D Rb-82 Myocardial Perfusion PET/CT Imaging. J Nucl Card 2008;15:S4.

    Article  Google Scholar 

  41. Esteves FP, Nye JA, Khan A, Folks RD, Halkar RK, Garcia EV, Schuster DM, Lerakis S, Raggi P, Votaw JR. Prompt-gamma compensation in Rb-82 myocardial perfusion 3D PET/CT. J Nucl Cardiol 2009;17:247-53.

    Article  PubMed  Google Scholar 

  42. Boellaard R, van Lingen A, Lammertsma AA. Experimental and clinical evaluation of iterative reconstruction (OSEM) in dynamic PET: Quantitative characteristics and effects on kinetic modeling. J Nucl Med 2001;42:808-17.

    CAS  PubMed  Google Scholar 

  43. Cook RAH, Carnes G, Lee T-Y, Wells RG. Respiration-Averaged CT for Attenuation Correction in Canine Cardiac PET/CT. J Nucl Med 2007;48:811-8.

    Article  PubMed  Google Scholar 

  44. Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D, Gropler RJ, Knuuti J, Schelbert HR, Travin MI. ASNC imaging guidelines for nuclear cardiology procedures: PET myocardial perfusion and metabolism clinical imaging. J Nucl Cardiol. doi:10.1007/s12350-009-9094-9.

  45. deKemp RA, Klein R, Lortie M, Beanlands R. Constant-activity-rate infusions for myocardial blood flow quantification with 82Rb and 3D PET. In: Nucl Sci Symp and Med Imag Conf Record; 2006, p. 3519-21.

  46. Renkin EM. Transport of potassium-42 from blood to tissue isolated mammalian skeletal muscles. Am J Physiol 1959;197:1205-10.

    CAS  PubMed  Google Scholar 

  47. Crone C. Permeability of capillaries in various organs as determined by use of the indicator diffusion method. Acta Physiol Scand 1963;58:292-305.

    Article  CAS  PubMed  Google Scholar 

  48. Katoh C, Morita K, Shiga T, Kubo N, Nakada K, Tamaki N. Improvement of algorithm for quantification of regional myocardial blood flow using 15O-water with PET. J Nucl Med 2004;45:1908-16.

    PubMed  Google Scholar 

  49. Iida H, Kanno I, Takahashi A, Miura S, Murakami M, Takahashi K, Ono Y, Shishido F, Inugami A, Tomura N. Measurement of absolute myocardial blood flow with H 152 O and dynamic positron-emission tomography. Strategy for quantification in relation to the partial-volume effect. Circulation 1988;78:104-15.

    CAS  PubMed  Google Scholar 

  50. Iida H, Yokoyama I, Agostini D, Banno T, Kato T, Ito K, Kuwabara Y, Oda Y, Otake T, Tamura Y, Tadamura E, Yoshida T, Tamaki N. Quantitative assessment of regional myocardial blood flow using oxygen-15-labelled water and positron emission tomography: A multicentre evaluation in Japan. Eur J Nucl Med 2000;27:192-201.

    Article  CAS  PubMed  Google Scholar 

  51. Manabe O, Yoshinaga K, Katoh C, Naya M, deKemp RA, Tamaki N. Repeatability of rest and hyperemic myocardial blood flow measurements with 82Rb dynamic PET. J Nucl Med 2009;50:68-71.

    Article  PubMed  Google Scholar 

  52. El Fahkri G, Sitek A, Guerin B, Kijewski MF, Di Carli MF, Moore SC. Quantitative dynamic cardiac 82Rb PET using generalized factor and compartment analyses. J Nucl Med 2005;8:1264-71.

    Google Scholar 

  53. El Fakhri G, Kardan A, Sitek A, Dorbala S, Abi-Hatem N, Lahoud Y, Fischman A, Coughlan M, Yasuda T, Di Carli MF. Reproducibility and accuracy of quantitative myocardial blood flow assessment with 82Rb PET: Comparison with 13N-ammonia PET. J Nucl Med 2009;50:1062-71.

    Article  CAS  PubMed  Google Scholar 

  54. Wu H-M, Hoh CK, Choi Y, Schelbert HR, Hawkins RA, Phelps ME, Huang S-C. Factor analysis for extraction of blood time-activity curves in dynamic FDG-PET studies. J Nucl Med 1995;36:1714-22.

    CAS  PubMed  Google Scholar 

  55. Wu H-M, Hoh CK, Buxton DB, Kuhle WG, Schelbert HR, Choi Y, Hawkins RA, Phelps ME, Huang S-C. Quantification of myocardial blood flow using dynamic nitrogen-13-ammonia PET studies and factor analysis of dynamic structures. J Nucl Med 1995;36:2087-93.

    CAS  PubMed  Google Scholar 

  56. Klein R, Beanlands RS, Wassenaar RW, Thorn S, Lamoureux M, DaSilva JN, Adler A, deKemp RA. Model based factor analysis of dynamic sequences of cardiac positron emission tomography. Med Phys 2010; in press.

  57. Gould KL, Pan T, Loghin C, Johnson NP, Guha A, Sdringola S. Frequent diagnostic errors in cardiac PET/CT due to misregistration of CT attenuation and emission PET images: A definitive analysis of causes, consequences, and corrections. J Nucl Med 2007;48:1112-21.

    Article  PubMed  Google Scholar 

  58. Patterson PE, Eisner RL, Horowitz SF. Comparison of cost-effectiveness and utility of exercise ECG, single photon emission computer tomography, positron emission tomography, and coronary angiography for diagnosis of coronary artery disease. Circulation 1995;91:54-65.

    CAS  PubMed  Google Scholar 

  59. Merhige ME, Breen WJ, Shelton V, Houston T, D’Arcy BJ, Perna AF. Impact of myocardial perfusion imaging with PET and (82)Rb on downstream invasive procedure utilization, costs, and outcomes in coronary disease management. J Nucl Med 2007;48:1069-76.

    Article  PubMed  Google Scholar 

  60. Cherry S, Dahlbom M. PET: Physics, instrumentation, and scanners. In: Phelps M, editor. PET molecular imaging and its biological. New York: Springer-Verlag; 2004. p. 1-124.

  61. Schelbert HR, Phelps ME, Huang SC, MacDonald NS, Hansen H, Selin C, Kuhl DE. N-13 Ammonia as an indicator of myocardial blood flow. Circulation 1981;63:1259-72.

    CAS  PubMed  Google Scholar 

  62. Beanlands RSB, Muzik O, Mintun M, Mangner T, Lee K, Petry N, Hutchins GD, Schwaiger M. The kinetics of copper-62-PTSM in the normal human heart. J Nucl Med 1992;33:684-90.

    CAS  PubMed  Google Scholar 

  63. Lautamaki R, George RT, Kitagawa K, et al. Rubidium-82 PET-CT for quantitative assessment of myocardial blood flow: Validation in a canine model of coronary artery stenosis. Eur J Nucl Med Mol Imaging 2009;36:576-86.

    Article  PubMed  Google Scholar 

  64. Glatting G, Bergmann KP, Stollfuss JC, Weismueller P, Kochs M, Hombach V, Reske SN. Myocardial Rb extraction fraction: Determination in humans. J Am Coll Cardiol 1995;25:364A-5A.

    Article  Google Scholar 

  65. Schelbert HR. Positron emission tomography of the heart: methodology, findings in the normal and the disease heart, and clinical applications. In: Phelps ME, editor. PET: molecular imaging and its biological applications. New York: Springer.

  66. Lecomte R. Technology challenges in small animal PET imaging. Nucl Instrum Meth Phys Res A 2004;527:157-65.

    Article  CAS  Google Scholar 

  67. Bergmann SR, Fox KA, Rand AL, McElvany KD, Welch MJ, Markham J, Sobel BE. Quantification of regional myocardial blood flow in vivo with H215O. Circulation 1984;70:724-33.

    CAS  PubMed  Google Scholar 

  68. Yoshida K, Mullani N, Gould KL. Coronary flow and flow reserve by PET simplified for clinical applications using rubidium-82 or nitrogen-13-ammonia. J Nucl Med 1996;37:1701-12.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by CIHR grants MOP-79311 and MIS-100935, and Ontario Research Fund Grant RE-02-038. We would like to thank Astellas Pharma US, Inc., Covidien, and GE Healthcare for corporate support to publish and distribute this article. Corporate supporters were not involved in the creation or review of information contained in this article. RK, RB, and RdK receive consulting fees and royalties from DraxImage for the sale of Rb generators. RK and RdK receive profit shares from the sale of FlowQuant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. deKemp PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, R., Beanlands, R.S.B. & deKemp, R.A. Quantification of myocardial blood flow and flow reserve: Technical aspects. J. Nucl. Cardiol. 17, 555–570 (2010). https://doi.org/10.1007/s12350-010-9256-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-010-9256-9

Keywords

Navigation