Skip to main content

Advertisement

Log in

Sustainability in Sugarcane Supply Chain in Brazil: Issues and Way Forward

  • S.I.: Innovation for Sustainability of the Sugar Agro-Industry
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

This study presents a literature review of the main advances that took place in the last 10 years in the agricultural production of sugarcane in Brazil, which can effectively result in increased productivity and sustainability. This became a central topic as much of this crop in Brazilian is used to produce ethanol to replace fossil fuels; therefore, the increased concerns about global warming and climate change, and the greater pressure from society for sustainability in agriculture in general became more relevant for sugarcane. Actions have been taken to encourage the use of more conservationist practices from planting to harvesting, greater recycling of residues, preservation of biodiversity, delivery of environmental services, adoption of circular economy and, especially, compliance with internal and external commitments on reduction of greenhouse gas (GHG) emissions, among other aspects. Fertilizer recommendations have been revised to increase yields and ratoon longevity, leading to higher rates of micronutrients and the more frequent application of lime, phosphogypsum, and P fertilizers in ratoons. Optimized use of vinasse includes addition of mineral fertilizers to save field operations for separate fertilization. The sugarcane breeding programs in Brazil are releasing an average of eight varieties per year, including transgenic varieties. Replanting of sugarcane fields with newer and more productive varieties are facilitated by novel planting methods using pre-sprouted settlings (PSS) combined with the nurseries mingled into the crop renewal fields, locally termed “MEIOSI,” which also allow the easy introduction of rotation crops. Soil compaction and ratoon trampling caused by heavy machines that replaced manual harvesting are being solved with GPS-based traffic control, which is embedded in most farming equipment in the sugarcane sector nowadays. Finally, public policies, such as the Renovabio legislation, incentivizing the production of sugarcane/ethanol with low GHG emissions are also in place. With this, the sugarcane industry is revising all field and industrial procedures to optimize operations and earn more decarbonization credits, in a win–win situation. The combined efforts of research institutions and the private sector, along with the proper policies, have the potential to lead toward a renewed and more sustainable sugarcane industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

(adapted from the Fourth National Communication of Brazil to the United Nations Framework Convention on Climate Change/Secretariat for Research and Scientific Training)

Fig. 5
Fig. 6

Source: Silveira et al. (2020)

Fig. 7
Fig. 8
Fig.9

Similar content being viewed by others

Notes

  1. Communication of the co-authors of the recommendations.

References

  • Ambrosano, E.J., P.C.O. Trivelin, H. Cantarella, G.M.B. Ambrosano, E.A. Schammass, T. Muraoka, and F. Rossi. 2011. 15N-labeled nitrogen from green manure and ammonium sulfate utilization by the sugarcane ratoon. Scientia Agricola. 68: 361–368.

    Article  CAS  Google Scholar 

  • ANA – National Water and Basic Sanitation Agency (Brazil). 2021. Atlas of irrigation: water use in irrigated agriculture / National Water and Basic Sanitation Agency. 2.ed. Brasília: ANA. 130 p. il. ISBN: 978-65-88101-10-0

  • ANP – Agência Nacional do Petróleo. Resolução ANP n° 758, de 23 de novembro de. 2018. Resolução 758 2018 da ANP - Agência Nacional do Petróleo, Gás Natural e Biocombustíveis BR (atosoficiais.com.br)

  • ANP. 2021. Diário Oficial da União. Publicado em: 24/05/2021. Edição: 96, Seção: 1. P. 64 Resolução n. 843. Resolução ANP N° 843, de 21 maio de 2021 - DOU - Imprensa Nacional (in.gov.br)

  • Antunes, E.J., Jr., J. Alves Jr., C.C.R. Sena, D. Casaroli, A.W.P. Evangelista, and R. Battisti. 2021. Responses of different varieties of sugarcane to irrigation levels in the Cerrado. Australian Journal of Crop Science 15 (08): 1110–1118. https://doi.org/10.21475/ajcs.21.15.08.p2978.

    Article  CAS  Google Scholar 

  • Barbosa, V., A. Ramos, A.M.P. Durigan, N.A. Gloria, and M.A. Mutton. 2006. Uso de vinhaça concentrada na adubação de soqueira de cana-de-açúcar. Stab 24 (6): 6–8.

    Google Scholar 

  • Barbosa, G.V.S., J.M. Santos, C.A. Diniz, D.E. Cursi, and H.P. Hoffmann. 2020. Energy cane breeding. In Sugarcane biorefinery, technology and perspectives, 1st ed., ed. F. Santos, S. Rabelo, M. Matos, and P. Eichler, 103–116. Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-814236-3.00006-8.

    Chapter  Google Scholar 

  • Barcelos, J.E.T. 1984. “Meiosi - Cana e Alimentos” Método inter-rotacional ocorrendo simultaneamente. Saccharum - Revista Tecnológica da indústria açucareira alcooleira. Ano VII. 31.

  • Barreto, M. C., A.L.F. Dias, M.V.B. Figueiredo, C.H.A. Farias, M.R. Barbosa, A.A. and Santos, A.G. Andrade. 2018 Aclimatização de mudas pré-brotadas de cana-de-açúcar em diferentes substratos. In: Elementos da natureza e propriedades do solo. (Eds.). Amormino Júnior, M. Atena ed: 8–16.

  • Barros, T.H.S., A.P.A. Pereira, A.J. Souza, N.L. Ribeiro, E.J.B. Nogueira, and R.D. Coelho. 2019. Influence of sugarcane genotype and soil moisture level on the arbuscular mycorrhizal fungi community. Sugar Tech 21: 505–513. https://doi.org/10.1007/s12355-018-0640-0#citeas.

    Article  Google Scholar 

  • Biggs, I.M., G.R. Stewart, J.R. Wilson, and C. Critchley. 2002. N-15 Natural abundance studies in Australian commercial sugarcane. Plant and Soil 238 (1): 21–30.

    Article  CAS  Google Scholar 

  • Bolonhezi, D., R.B.F. Branco, M.J Perdoná, S.A.M. Carbonell and A.F. Chiorato. Intercropping of sugarcane with common bean in no-tillage and different nitrogen rates. In 19th world congress of soil science symposium 4.2.1 Soil, energy and food security Soil Solutions for a Changing World, Brisbane, Australia 1 – 6 August 2010 pp. 23–26.

  • Bolonhezi, D.; Cury, T.; De Maria, I.C.; Rossini, D.B.; Marconato, M.B.; Camilo, E.H. Dry root biomass of sugarcane grown under different lime rates in conventional and no-tillage system. In: international society of root research, viii, Dundee, Scotland, 2012, Abstract. University of Dundee, 2011. (CD-rom)

  • Bordonal, R.O., J.L.N. Carvalho, R. Lal, E.B. Figueiredo, B.G. Oliveira, and N.. La.. Scala Jr. 2018. Sustainability of sugarcane production in Brazil. A. Review. Agronomy for Sustainable Development 38 (13): 1–23. https://doi.org/10.1007/s13593-018-0490-x.

    Article  Google Scholar 

  • Borges, C.D., J.L.N. Carvalho, O.T. Kolln, G.M. Sanches, M.J. Silva, S.G.Q. Castro, S.A.Q. Castro, L.L. Sousa, J.V.C. Oliveira, H. Cantarella, V.P. Vargas, S.M. Tsai, and H.C.J. Franco. 2019. Can alternative N-fertilization methods influence GHG emissions and biomass production in sugarcane fields?. Biomass and Bioenergy 120: 21–27. https://doi.org/10.1016/j.biombioe.2018.10.017.

    Article  CAS  Google Scholar 

  • Börjesson P. 2009. Good or bad bioethanol from a greenhouse gas perspective—what determines this? Applied Energy 86:589–594. https://doi.org/10.1016/j.apenergy.2008.11.025

    Article  CAS  Google Scholar 

  • Braga, N.C.C., E.D. Severiano, L.S. Santos, A.R. Neto, T.M. Rodrigues, J. Danyelly, and P. Lima. 2019. Production of sugarcane seedlings pre-sprouted in comercial and alternative substrates with by-products of the sugarcane industry. Semina: Ciências Agrárias 40 (1): 33–48. https://doi.org/10.5433/1679-0359.2019v40n1p33.

    Article  CAS  Google Scholar 

  • Brasil - Câmara dos Deputados. 2017. Lei N°13576, de 26 de dezembro de 2017 - Dispõe sobre a Política Nacional de Biocombustíveis (RenovaBio) e dá outras providências. In: House of Representatives - Brazil (ed.) No. Law 13576. Brazil - Diario Oficial da União, Brasilia.

  • Brasil. 2021. Ministério da Ciência, Tecnologia e Inovações. Secretaria de Pesquisa e Formação Científica. Quarta Comunicação Nacional do Brasil à Convenção Quadro das Nações Unidas sobre Mudança do Clima/Secretaria de Pesquisa e Formação Científica. -- Brasília: Ministério da Ciência, Tecnologia e Inovações. 620 p.: iL. ISBN: 978-65-87432-18-2

  • Budzinski, I.G.F., F.E. de Moraes, T.R. Cataldi, L.M. Franceschini, and C.A. Labate. 2019. Network analyses and data integration of proteomics and metabolomics from leaves of two contrasting varieties of sugarcane in response to drought. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2019.01524.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cabral, O. M. R., N.P. Ramos, A.P.C. Packer, C.A. Andrade, H.C. Freitas and C. Pires. 2016. Emissões de CO2 observadas durante a reforma de canavial. In: Congresso Nacional da Sociedade dos Técnicos Açucareiros e Alcooleiros do Brasil, 10. Ribeirão Preto. Ribeirão Preto, Brazil. STAB: 345–348.

  • Cantarella, H., P.C.O. Trivelin, T.L.M. Contin, F.L.F. Dias, and R. Rossetto. 2008a. Ammonia volatilisation from urease inhibitor-treated urea applied to sugarcane trash blankets. Science in Agriculture 65: 397–401. https://doi.org/10.1590/S0103-90162008000400011.

    Article  CAS  Google Scholar 

  • Cantarella, H., P.C.O. Trivelin, T.L.M. Contin, F.L.F. Dias, R. Rossetto, R. Marcelino, R.B. Coimbra, and J.A. Quaggio. 2008b. Ammonia volatilisation from urease inhibitor-treated urea applied to sugarcane trash blankets. Scientia Agricola. 65 (4): 397–401.

    Article  CAS  Google Scholar 

  • Cantarella, H., C.E.P. Cerri, J.L.N. Carvalho, and P.S.G. Magalhaes. 2013. Editorial: how much sugarcane trash should be left on the soil. Scientia Agricola. 70 (5): 1–2.

    Article  Google Scholar 

  • Cantarella, H., R. Otto, J.R. Soares, and A.G.B. Silva. 2018a. Agronomic efficiency of NBPT as a urease inhibitor: a review. Journal of Advanced Research 13: 19–27. https://doi.org/10.1016/j.jare.2018.05.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantarella, H., R. Otto, J.R. Soares, and A.G. de Brito Silva. 2018. Agronomic efficiency of NBPT as a urease inhibitor: a review. Journal of Advanced Research 13: 19–27. https://doi.org/10.1016/j.jare.2018.05.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantarella, H., B.G. Oliveira, K.S. Lenço, J.R. Soares, L.C. Gonzaga, and J.L.N. Carvalho. 2020. Nitrification inhibitors reduce the carbon footprint of sugarcane production. Pakistan Sugar Journal 35: 26.

    Google Scholar 

  • Cantarella, H., and R. Rossetto. 2010. Fertilizers for sugarcane. In: L. A. B. Cortez, editor, Sugarcane Bioethanol. Blucher, São Paulo. pp. 405–421.

  • Cantarella, H. and R. Rossetto. 2012. Fertilizer concerns. In Sustainability of Sugarcane Bioenergy; Poppe, M.K., Cortez, L.A.B., Eds.; CGEE: Brasilia—DF, Brasil. 71–94.

  • Cantarella H, Z.F. Montezano, H.A.W. Joris, A.C. Vitti, R. Rossetto, G.J.C. Gava, F.L.F. Dias, S. Urquiaga and V.M. Reis. 2014. Nitrogen fertilization and inoculation of sugarcane with diazotrophic bacteria: 13-site-year of field results. In Proceedings of the 2nd Brazilian Bio Energy Science and Technology Conference, Campos do Jordão

  • Cardoso, E. J. B. N., I.M. Cardoso, M.A. Nogueira, C.R.D.M. Baretta and A.M. Paula. 2010. Micorrizas Arbusculares na aquisição de nutrientes pelas plantas. In J.O. Siqueira, F. A. Souza, E.J.B.N. Cardoso, S. M. Tsai (Eds.), Micorrizas: 30 anos de pesquisas no Brasil:153–214.

  • Carmo, J.B., S. Filoso, L.C. Zotelli, E. Sousa Neto, L.M. Pitombo, P.J. Duarte Neto, V.P. Vargas, C.A. Andrade, G.J.C. Gava, R. Rossetto, H. Cantarella, A. Elia Neto, and L.A. Martinelli. 2013. Infield greenhouse gas emissions from sugarcane soils in Brazil: effects from synthetic and organic fertilizer application and crop trash accumulation. Global Change Biology Bioenergy. 5: 267–280. https://doi.org/10.1111/j.1757-1707.2012.01199.x.

    Article  CAS  Google Scholar 

  • Carvalho, J.L.N., R.C. Nogueirol, L.M.S. Menandro, R.D.O. Bordonal, C.D. Borges, H. Cantarella, and H.C.J. Franco. 2017. Agronomic and environmental implications of sugarcane straw removal: a major review. Global Change Biology Bioenergy 9: 1181–1195. https://doi.org/10.1111/gcbb.12410.

    Article  CAS  Google Scholar 

  • Carvalho, J.L.N., T.W. Hudiburg, H.C.J. Franco, and E.H. DeLucia. 2017b. Contribution of above- and belowground bioenergy crop residues to soil carbon. GCB Bioenergy 9: 1333–1343. https://doi.org/10.1111/gcbb.12411.

    Article  CAS  Google Scholar 

  • Carvalho, J.L.N., L.M.S. Menandro, S.G.Q. de Castro, M.R. Cherubin, R. de Oliveira Bordonal, L.C. Barbosa, L.C. Gonzaga, S. Tenelli, H.C.J. Franco, O.T. Kolln, and G.A.F. Castioni. 2019. Multilocation straw removal effects on sugarcane yield in South-Central Brazil. Bioenergy Res. 12: 813–82.

    Article  CAS  Google Scholar 

  • Carvalho, J.L.N., B.G. Oliveira, H. Cantarella, M.F. Chagas, L.C. Gonzaga, K.S. Lourenço, and A. Bonomi. 2021. Implications of regional N2O–N emission factors on sugarcane ethanol emissions and granted decarbonization certificates. Renewable and Sustainable Energy Reviews 149: 111423.

    Article  CAS  Google Scholar 

  • Carvalho-Netto, O.V., J.A. Bressiani, H.L. Soriano, C. Fiori, J. Santos, G.V. Barbosa, M.G.A. Landell, and G. Pereira. 2014. The potential of the energy cane as the main biomass crop for the cellulosic industry. Chemical Biol. Technology Agriculture 1: 20. https://doi.org/10.1186/s40538-014-0020-2.

    Article  CAS  Google Scholar 

  • Cassman, N.A., J.R. Soares, A. Pijl, K.S. Lourenço, J.A. van Veen, H. Cantarella, and E.E. Kuramae. 2019. Nitrification inhibitors effectively target N2O-producing Nitrosospira spp. in tropical soil. Environmental Microbiology. 21 (4): 1241–1254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro, S.G.Q., S.T. Decaro Junior, H.C.J. Franco, P.S.G. Magalhães, A.L. Garside, and M.A. Mutton. 2016. Best practices of nitrogen fertilization management for sugarcane under green cane trash blanket in Brazil. Sugar Tech 19: 51–56. https://doi.org/10.1007/s12355-016-0443-0.

    Article  Google Scholar 

  • Castro, S.G.Q., L.C. Zotelli, J.L.N. Carvalho and H.C.J. Franco. 2019. Sugarcane yield and nitrogen losses associated with different methods of applying N fertilizer. Proceedings of the International Society of Sugar Cane Technologists, 30: 361–367. Peer-reviewed paper. https://members.issct.org/prozone/docs/XXX%20ISSCT%20Congress%20Proceedings,%20Argentina%202-5%20September%202019/Agronomy%20papers/Castro-Sugarcane-yield-nitrogen-losses-associated-different.pdf

  • Cavalett, O., M.F. Chagas, T.L. Junqueira, M.D.B. Watanabe, and A. Bonomi. 2017. Environmental impacts of technology learning curve for cellulosic ethanol in Brazil. Industrial Crops and Products 106: 31–39. https://doi.org/10.1016/j.indcrop.2016.11.025.

    Article  Google Scholar 

  • Cerri, C.C., M.V. Galdos, S.M.F. Maia, M. Bernoux, B.J. Feigl, D. Powlson, and C.E.P. Cerri. 2011. Effect of sugarcane harvesting systems on soil carbon stocks in Brazil: an examination of existing data. European Journal of Soil Science 62: 23–28. https://doi.org/10.1111/j.1365-2389.2010.01315.x.

    Article  CAS  Google Scholar 

  • CETESB - Companhia Ambiental do Estado de São Paulo. 2015. Vinhaça - critérios e procedimentos para aplicação no solo agrícola. In: CETESB (ed.) Norma Técnica P4.231 - 3rd. Edition, 2nd Version No. Norma Técnica P4.231. 15p. CETESB, São Paulo.

  • Cheavegatti-Gianotto, A., A. Gentile, D.A. Oldemburgo, G.A. Merheb, M.L. Sereno, R.P. Lirette, T.H.S. Ferreira, and W.S. Oliveira. 2018. Lack of detection of Bt sugarcane Cry1Ab and NptII DNA and proteins in sugarcane processing products including raw sugar. Frontiers in Bioengineering and Biotechnology. https://doi.org/10.3389/fbioe.2018.00024.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cherubin, M.R., I.P. Lisboa, A.G.B. Silva, L.L. Varanda, R.O. Bordonal, J.L.N. Carvalho, R. Otto, P.S. Pavinato, A. Soltangheisi, and C.E.P. Cerri. 2019. Sugarcane straw removal: implications to soil fertility and fertilizer demand in Brazil. BioEnergy Research 12: 888–900. https://doi.org/10.1007/s12155-019-10021-w.

    Article  CAS  Google Scholar 

  • Cherubin, M.R., J.L.N. Carvalho, C.E.P. Cerri, L.A.H. Nogueira, G.M. Souza, and H. Cantarella. 2021a. Land use and management effects on sustainable sugarcane-derived bioenergy. Land 10 (1): 72.

    Article  Google Scholar 

  • Cherubin, M.R., J.L.N. Carvalho, C.E.P. Cerri, L.A.H. Nogueira, G.M. Souza, and H. Cantarella. 2021b. Land use and management effects on sustainable sugarcane-derived bioenergy. Land 10 (72): 1–24. https://doi.org/10.3390/land10010072.

    Article  Google Scholar 

  • Cia, M.C.A., C.R. Guimarães, L.O. Medici, S.M. Chabregas, and R.A. Azevedo. 2012. Antioxidant responses to water deficit by drought-tolerant and -sensitive sugarcane varieties. Annals of Applied Biology. https://doi.org/10.1111/j.1744-7348.2012.00575.

    Article  Google Scholar 

  • Cipriano, M.A.P., A.K.A. Suleiman, A.P.D. Silveira, J.B. Carmo, and E.E. Kuramae. 2019. Bacterial community composition and diversity of two different forms of an organic residue of bioenergy crop. Peer Journal 7: e6768.

    Article  CAS  Google Scholar 

  • Cipriano, M.A.P., R.P. Freitas-Iorio, M.R. Dimitrov, S.A.L. Andrade, E.E. Kuramae, and A.P.D. Silveira. 2021. Plant-growth endophytic bacteria improve nutrient use efficiency and modulate foliar N-metabolites in sugarcane seedling. Microorganisms 9: 479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Civiero, J.C., E. Daros, L.J.O.T. Melo, H. Weber, A.F. Mógor, and G.G.O. Figueiredo. 2014. Application of humic substance and L-glutamic amino acid in diferent sizes of 1-bud set of sugarcane. Revista De Ciências Agrárias. 37 (3): 340–347.

    Google Scholar 

  • CNA -Confederação da Agricultura e Pecuária do Brasil. Valor Bruto da Produção, 2021. Acesso em 29 de agosto de 2021. https://www.cnabrasil.org.br/assets/arquivos/boletins/VBP_agosto.15set2021.pdf

  • CONAB 2017. Perfil do setor do açúcar e do etanol no Brasil: edição para a safra 2015/16. Brasília, DF, https://www.conab.gov.br/info-agro/safras/cana/perfil-do-setor-sucroalcooleiro.

  • CONAB 2021. https://www.conab.gov.br/info-agro/safras/cana/boletim-da-safra-de-cana-de-acucar?start=30

  • Cortez, L.A.B., C.H.d. B. Cruz, G.M. Souza, H. Cantarella, M.A. Van Sluys, and R. Maciel Filho. 2016. Proálcool 40 anos. Universidades e empresas: 40 anos de ciência e tecnologia para o etanol brasileiro. Blucher, São Paulo.

  • Creste, S., D.M. Sansoli, A.C.S. Tardiani, D.N. Silva, F.K. Goncalves, T.M. Favero, C.N.F. Medeiros, C.S. Festucci, L.A. Carlini-Garcia, and M.G.A. Landell. 2010. Comparison of AFLP, TRAP and SSRs in the estimation of genetic relationships in sugarcane. Sugar Tech 12: 150–154. https://doi.org/10.1007/s12355-010-0029-1.

    Article  CAS  Google Scholar 

  • Crutzen, P.J., A.R. Mosier, K.A. Smith, and W. Winiwarter. 2008. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmospheric Chemistry and Physics 8: 389–395. https://doi.org/10.5194/acp-8-389-2008.

    Article  CAS  Google Scholar 

  • CTC – Centro de Tecnologia Canavieira. 2019. Manual Tecnico de boas Práticas - Meiosi. https://ctc.com.br/produtos/wp-content/uploads/2018/09/Manual-de-Boas-Pr%C3%A1ticas-Meiosi- 5.pdf. p.14

  • CTC – Centro de Tecnologia Canavieira. 2021 https://ctc.com.br/produtos/wp-content/uploads/2020/01/ Bula-CTC20BT-2021–21.pdf.

  • Cury, T.N., I.C. de Maria, and D. Bolonhezi. 2014. Biomassa radicular da cultura de cana-de-açúcar em sistema convencional e plantio direto com e sem calcário. Revista Brasileira De Ciência Do Solo. 38 (6): 1929–1938. https://doi.org/10.1590/S0100-06832014000600027.ISSN1806-9657.

    Article  Google Scholar 

  • da Silva, J.A. 2017. The importance of the wild cane saccharum spontaneum for bioenergy genetic breeding. Sugar Tech 19: 229–240. https://doi.org/10.1007/s12355-017-0510-1.

    Article  CAS  Google Scholar 

  • da Silveira, A.P.D., R.D.P.F. Iório, F.C.C. Marcos, A.O. Fernandes, S.A.C.D. de Souza, E.E. Kuramae, and M.A.P. Cipriano. 2019. Exploitation of new endophytic bacteria and their ability to promote sugarcane growth and nitrogen nutrition. Antonie van Leeuwenhoek 112: 283–295. https://doi.org/10.1007/s10482-018-1157-y.

    Article  CAS  PubMed  Google Scholar 

  • de Aquino, G.S., C.C. Medina, M. Shahab, M.A.D. Santiago, A.C.B. Cunha, D.A.O. Kussaba, J.B. Carvalho, and A. Moreira. 2018. Does straw mulch partial-removal from soil interfere in yield and industrial quality sugarcane? A long term study. Industrial Crops and Products 111: 573–578.

    Article  CAS  Google Scholar 

  • de Morais, M.B., R.A. Azevedo, T.R. Camara, C. Ulisses, C.C. Albuquerque, and L. Willadino. 2020. Antioxidative metabolism in sugarcane (Poaceae) varieties subjected to water and saline stress. Revista Brasileira de Engenharia Agrícola e Ambiental. 24 (11): 776–782. https://doi.org/10.1590/1807-1929/agriambi.

    Article  Google Scholar 

  • de Oliveira, L.A., J.H. Miranda, and R.A.C. Cooke. 2018b. Water management for sugarcane and corn under future climate scenarios in Brazil. Agricultural Water Management 201: 199–206. https://doi.org/10.1016/j.agwat.2018.01.019.

    Article  Google Scholar 

  • Degaspari, I.A.M., J.R. Soares, Z.F. Montezano, S.J. Del Grosso, A.C. Vitti, R. Rossetto, and H. Cantarella. 2020. Nitrogen sources and application rates affect emissions of N2O and NH3 in sugarcane. Nutrient Cycling in Agroecosystems. 116 (3): 329–344. https://doi.org/10.1007/s10705-019-10045-w.

    Article  CAS  Google Scholar 

  • Dinardo-Miranda, L.L., and J.V. Fracasso. 2013. Sugarcane straw and the populations of pests and nematodes. Science in Agriculture 70: 305–310. https://doi.org/10.1590/S0103-90162013000500012.

    Article  Google Scholar 

  • Dorneles Junior, J., R.P. Alves, R.M. Santos, R. Ramos, N.P. Ramos and S.S. Prado. 2015. Influência da quantidade de palhada em cana-de-açúcar na população de Mahanarva fimbriolata (Stâl, 1854) (Hemiptera: Cercopidae). In: Workshop Agroenergia, 9., Ribeirão Preto. Matérias Primas: anais... Ribeirão Preto: APTA. RE 088. 7 p.

  • Endres, L., C.M. dos Santos, J.V. Silva, G.V.S. Barbosa, A.L.J. Silva, A. Froehlich, and M.M. Teixeira. 2019. Inter-relationship between photosynthetic efficiency, Δ13C, antioxidant activity and sugarcane yield under drought stress in field conditions. Journal of Agronomy and Crop Science. 205 (5): 433–446. https://doi.org/10.1111/jac.12336.

    Article  CAS  Google Scholar 

  • FAOSTAT (2020) Data. Crop and livestock produts. http://www.fao.org/faostat/en/#data/QCL.

  • Ferreira, D.A., H.C.J. Franco, R. Otto, A.C. Vitti, C. Fortes, C.E. Faroni, A.L. Garside, and P.C.O. Trivelin. 2016. Contribution of N from green harvest residues for sugarcane nutrition in Brazil. GCB Bioenergy. 8: 859–866.

    Article  Google Scholar 

  • Ferreira, T.H.S., M.S. Tsunada, D. Bassi, P. Araújo, L. Mattiello, G.V. Guidelli, G.L. Righetto, V.R. Gonçalves, P. Lakshmanan, and M. Menossi. 2017. Sugarcane water stress tolerance mechanisms and its implications on developing biotechnology solutions. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2017.01077,8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fors, R.O., O.J. Saggin Jr., M.A.C. Carneiro, and R.L. Berbara. 2020. Selection of arbuscular mycorrhizal fungi for sugarcane in four soils with the presence of dark septate endophytes. Acta Scientiarum. Agronomy 42: e42477. https://doi.org/10.4025/actasciagron.v42i1.42477.

    Article  Google Scholar 

  • Furtado, A.T., M.P. Hekkert, and S.O. Negro. 2020. Of actors, functions, and fuels: Exploring a second-generation ethanol transition from a technological innovation systems perspective in Brazil. Energy Research & Social Science 70: 101706. https://doi.org/10.1016/j.erss.2020.101706.

    Article  Google Scholar 

  • Galdos, M.V., C.C. Cerri, C.E.P. Cerri, K. Paustian, and R. Van Antwerpen. 2009. Simulation of soil carbon dynamics under sugarcane with the CENTURY model. Soil Science Society of America Journal 73 (3): 802–811. https://doi.org/10.2136/sssaj2007.0285.

    Article  CAS  Google Scholar 

  • Galdos, M.V., C.C. Cerri, and C.E.P. Cerri. 2009. Soil carbon stocks under burned and unburned sugarcane in Brazil. Geoderma 153 (3–4): 347–352. https://doi.org/10.1016/j.geoderma.2009.08.025.

    Article  CAS  Google Scholar 

  • Galdos, M.V.; C.C. Cerri, C.E.P. Cerri, K. Paustian, R. van Antwerpen. 2010. Simulation of sugarcane residue decomposition and aboveground growth. Plant and Soil 326: 243–259. 10.1007/s11104-009-0004-3

  • Garcia, J. C.; R.M. Souza, Y.P. Ohashi, L.P.M Silva, R.C.M. Pires, and M.A. Xavier. 2016. Fertilizantes de liberação controlada na formação de mudas pré-brotadas de cana-de-açúcar. In: 10º Congresso Nacional Da Sociedade dos Técnicos Açucareiros e Alcooleiros do Brasil, 10., 2016, Ribeirão Preto. Ribeirão Preto: STAB. 241–244.

  • Gava, G.J.C., F.V. Scarpare, H. Cantarella, O.T. Kölln, S.T. Ruiz-Corrêa, A.B. Arlanch, and P.C.O. Trivelin. 2019. Nitrogen source contribution in sugarcane-inoculated plants with diazotrophic bacterias under urea-N fertigation management. Sugar Tech 21 (3): 462–470. https://doi.org/10.1007/s12355-018-0614-2.

    Article  CAS  Google Scholar 

  • Gazola, T., M.L. Cipola Filho, and N.C. Franco Júnior. 2017. Avaliação de mudas pré-brotadas de cana-de-açúcar provenientes de substratos submetidos a adubação química e orgânica. Científica 45 (3): 300–306. https://cientifica.dracena.unesp.br/index.php/cientifica/article/view/995.

    Article  Google Scholar 

  • Geromel, M.E., C.E. Pereira, A.L.P. Kikuti, H. Kikuti, and J.R. Silva. 2019. Adubos de liberação lenta em cana-de-açúcar. Scientia Plena. https://doi.org/10.14808/sci.plena.2019.060201.

    Article  Google Scholar 

  • Gonzaga, L.C., J.L.N. Carvalho, B.G. Oliveira, J.R. Soares, and H. Cantarella. 2018. Crop residue removal and nitrification inhibitor application as strategies to mitigate N2O emissions in sugarcane fields. Biomass and Bioenergy 119: 206–216.

    Article  CAS  Google Scholar 

  • Grassi, M.C.B., and G.A.G. Pereira. 2019. Energy-cane and RenovaBio: Brazilian vectors to boost the development of Biofuels. Industrial Crops and Products 129: 201–205. https://doi.org/10.1016/j.indcrop.2018.12.006.

    Article  CAS  Google Scholar 

  • Guo, Y.-J., Y. Ni, and J.H. Huang. 2010. Effects of rhizobium, arbuscular mycorrhiza and lime on nodulation, growth and nutrient uptake of lucerne in acid purplish soil in China. Tropical Grasslands 44: 109–114.

    Google Scholar 

  • Hoefsloot, G., A.J. Termorshuizen, D.A. Watt, and M.D. Cramer. 2005. Biological nitrogen fixation is not a major contributor to the nitrogen demand of a commercially grown South African sugarcane cultivar. Plant and Soil 277 (1–2): 85–96. https://doi.org/10.1007/s11104-005-2581-0.

    Article  CAS  Google Scholar 

  • IPCC - Intergovernmental Panel on Climate Change. 2006. Guidelines for national greenhouse gas inventories, 2006. http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html

  • Jesus, H.I., M.L.S. Medeiros, M.F.Q. Lopes, B.S. Oliveira, G.M. Silva, and F. Mielezrski. 2019. Development and gas Exchange of pre-sprouted sugarcane seedlings in three diferent growing substrate media. Journal of Experimental Agriculture International. 32: 1–7. https://doi.org/10.9734/jeai/2019/v32i430114.

    Article  CAS  Google Scholar 

  • Braga Jr., R.L do C. and M.G.A. Landell. 2021. IAC atualiza pesquisa sobre novas técnicas de plantio em 2021. Revista Canavieiros, maio/junho 2021. p118–120

  • Braga Jr., R.L do C., M.G.A. Landell, D.N. Silva, M.A.P. Bidoia, T.N. Silva, V.H.P. Silva, A.M., Luz, I.A. Anjos. 2021. Censo Varietal IAC de Cana de açúcar no Brasil - Safra 2018/19 na Região Centro-Sul - Safra 2019/20. Série Tecnologia APTA Boletim Técnico, n. 225, 2021. ISSN 1809-7936, p. 64.

  • Jr Reis, F.B., L.G. da Silva, V.M. Reis, and J. Döbereiner. 2000. Ocorrencia de bactérias diazotróficas em diferentes genótipos de cana de açúcar. Pesquisa Agropecuária Brasileira. https://doi.org/10.1590/S0100-204X2000000500016.

    Article  Google Scholar 

  • Kinpara, D.I. 2020. Aspectos econômicos de fertilizantes organominerais obtidos a partir de cama de frango e de torta de filtro de cana-de-açúcar no Brasil. Planaltina, DF: Embrapa Cerrados. 25 p. (Documentos / Embrapa Cerrados, ISSN 1517–5111, ISSN online 2176- 5081; 360).

  • La Scala, N., Jr., D. Bolonhezi, and G.T. Pereira. 2006. Short-term soil CO2 emission after conventional and reduced tillage of a no-till sugar cane area in southern Brazil. Soil and Tillage Research 91: 244–248. https://doi.org/10.1016/j.still.2005.11.012.

    Article  Google Scholar 

  • Landell, M.G.A. 2021. Manejo Varietal em cana de açúcar. 2021. 64:5–7/ http://www.coplana.com:8090/wcoplana/wp-content/uploads/2021/04/InformativoAbril2021.pdf

  • Landell, M.G.A., M.P. Campana, and P. Figueiredo. 2012. Sistema de multiplicação de cana-de-açúcar com uso de mudas pré-brotadas (PSS), oriundas de gemas individualizadas. Documentos IAC 109: 16.

    Google Scholar 

  • Landell, M.G.D.A., M.S. Scarpari, M.A. Xavier, I.A.D. Anjos, A.S. Baptista, C.L.D. Aguiar, and M.F.D. Campos. 2013. Residual biomass potential of commercial and pre-commercial sugarcane cultivars. Scientia Agricola. 70: 299–304.

    Article  Google Scholar 

  • Lata, R., S. Chowdhury, S.K. Gond, and J.F. White Junior. 2018. Induction of abiotic stress tolerance in plants by endophytic microbes. Letters in Applied Microbiology 66: 268–276. https://doi.org/10.1111/lam.12855.

    Article  CAS  PubMed  Google Scholar 

  • Leal, M.R.L.V., and A.S. Walter. 2010. Sustainability of the production of ethanol from sugarcane: The Brazilian experience. International Sugar Journal 112 (1339): 390–396.

    CAS  Google Scholar 

  • Leal, M.R.L.V., M.V. Galdos, F.V. Scarpare, J.E.A. Seabra, A. Walter, and C.O.F. Oliveira. 2013. Sugarcane straw availability, quality, recovery, and energy use: a literature review. Biomass and Bionergy 53: 11–19. https://doi.org/10.1016/j.biombioe.2013.03.007.

    Article  Google Scholar 

  • Leite J.M. 2016. Eficiência agronômica da adubação nitrogenada associada à aplicação de substâncias húmicas em cana-de-açúcar. PhD Thesis (Doutorado em ciências área de concentração solos e nutrição de plantas). Piracicaba – SP: Escola Superior de Agricultura Luiz de Queiroz; 132p.

  • Lisboa, I.P., M.R. Cherubin, C.C. Cerri, D.G.P. Cerri, and C.E.P. Cerri. 2017. Guidelines for the recovery of sugarcane straw from the field during harvesting. Biomass and Bioenergy 96: 69–74. https://doi.org/10.1016/j.biombioe.2016.11.008.

    Article  Google Scholar 

  • Liu, X.J., A.R. Mosier, A.D. Halvorson, C.A. Reule, and F.S. Zhang. 2007. Dinitrogen and N2 O emissions in arable soils: Effect of tillage, N source and soil moisture. Soil Biology and Biochemistry. 39: 2362–2370.

    Article  CAS  Google Scholar 

  • Lorenzi B.R. and T.H.N. de Andrade. 2019. Second generation ethanol in Brazil: Policies and socio-technical networks. Rev Bras Ciencias Sociais. 34(100). https://orcid.org/0000-0001-8486-0726

  • Lourenço, K.S., M.R. Dimitrov, A. Pijl, J.R. Soares, J.B. Carmo, and J.A.van Veen, H. Cantarella H and E.E. Kuramae. 2018. Dominance of bacterial ammonium oxidizers and fungal denitrifiers in the complex nitrogen cycle pathways related to nitrous oxide emission. Global Change Biol Bioenergy 10: 645–660. https://doi.org/10.1111/gcbb.12519.

    Article  CAS  Google Scholar 

  • Lourenço, K.S., N.A. Cassman, A.S. Pijl, J.A. van Veen, H. Cantarella, and E.E. Kuramae. 2018. Nitrosospira sp. govern nitrous oxide emissions in a tropical soil amended with residues of bioenergy crop. Frontiers in Microbiology 9: 674. https://doi.org/10.3389/fmicb.2018.00674.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lourenço, K.S., A.K. Suleiman, A. Pijl, J.A. Van Veen, H. Cantarella, and E.E. Kuramae. 2018. Resilience of the resident soil microbiome to organic and inorganic amendment disturbances and to temporary bacterial invasion. Microbiome. 6: 142. https://doi.org/10.1186/s40168-018-0525-1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lourenço, K.S., R. Rossetto, A.C. Vitti, Z.F. Montezano, J.R. Soares, R.M. Sousa, J.B. Carmo, E.E. Kuramae, and H. Cantarella. 2019. Strategies to mitigate the nitrous oxide emissions from nitrogen fertilizer applied with organic fertilizers in sugarcane. Science of the Total Environment 650: 1476–1486. https://doi.org/10.1016/j.scitotenv.2018.09.037.

    Article  CAS  PubMed  Google Scholar 

  • Lourenço, K.S., A.K.A. Suleiman, A. Pijl, H. Cantarella, and E.E. Kuramae. 2020. Dynamics and resilience of soil mycobiome under multiple organic and inorganic pulse disturbances. Science of the Total Environment 733: 139173. https://doi.org/10.1016/j.scitotenv.2020.139173.

    Article  CAS  PubMed  Google Scholar 

  • Macedo I.C., J.E.A. Seabra, J.E.A.R. Silva. 2008. Greenhouse gases emissions in the production and use of ethanol from sugarcane in Brazil: the 2005/2006 averages and a prediction for 2020. Biomass Bioenergy 32:582–595. https://doi.org/10.1016/j.biombioe.2007.12.006

    Article  CAS  Google Scholar 

  • Maga, D., N. Thonemann, M. Hiebel, D. Sebastião, T.F. Lopes, C. Fonseca, and F. Gírio. 2019. Comparative life cycle assessment of first- and second-generation ethanol from sugarcane in Brazil. The International Journal of Life Cycle Assessment 24 (2): 266–280. https://doi.org/10.1007/s11367-018-1505-1.

    Article  CAS  Google Scholar 

  • Maia Júnior, S.O., J.R. Andrade, C.M. dos Santos, A.L.J. Silva, L. Endres, J.V. Silva, and L.K.S. Silva. 2020. Osmoregulators’ accumulation minimizes the effects of drought stress in sugarcane and contributes to the recovery of photochemical efficiency in photosystem II after rewatering. Acta Physiologiae Plantarum. https://doi.org/10.1007/s11738-020-03050-y,42.4.

    Article  Google Scholar 

  • Marangoni, F.F., R. Otto, R.F. de Almeida, V. Casarin, G.C. Vitti, and C.S. Tiritan. 2019. Soluble sources of zinc and boron on sugarcane yield in Southeast Brazil. Sugar Tech 21: 917–924. https://doi.org/10.1007/s12355-019-00716-x.

    Article  CAS  Google Scholar 

  • Marcos, F.C.C., R.D.P.F. Iório, A.P.D.D. Silveira, R.V. Ribeiro, E.C. Machado, and A.M.M.D.A. Lagôa. 2016. Endophytic bacteria affect sugarcane physiology without changing plant growth. Bragantia 75: 1–9. https://doi.org/10.1590/1678-4499.256.

    Article  Google Scholar 

  • Marin, F., P. Thorburn, L.G. Costa, and R. Otto. 2014. Simulating long-term effects of trash management on sugarcane yield for Brazilian cropping systems. Sugar Tech. 16: 164–173.

    Article  CAS  Google Scholar 

  • Martíni, A.F., G.P. Valani, L.F.S. da Silva, D. Bolonhezi, S. Di Prima, and M. Cooper. 2021. Long-term trial of tillage systems for sugarcane: effect on topsoil hydrophysical attributes. Sustainability 13: 3448. https://doi.org/10.3390/su13063448.

    Article  CAS  Google Scholar 

  • Meena, V.S., S.K. Meena, J.P. Verma, A. Kumar, A. Aeron, P.K. Mishra, J.K. Bisht, A. Pattanayak, M. Naveed, and M.L. Dotaniya. 2017. Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: A review. Ecological Engineering 107: 8–32. https://doi.org/10.1016/j.ecoleng.2017.06.058.

    Article  Google Scholar 

  • Mellis, E.V., J.A. Quaggio, G.R.G. Becari, L.A.J. Teixeira, H. Cantarella, and F.L.F. Dias. 2016. Effect of micronutrients soil supplementation on sugarcane in different production environments: cane plant cycle. Agronomy Journal 108 (5): 2060–2070. https://doi.org/10.2134/agronj2015.0563.

    Article  CAS  Google Scholar 

  • Menandro, L.M.S., H. Cantarella, H.C.J. Franco, O.T. Kölln, M.T.B. Pimenta, G.M. Sanches, S.C. Rabelo, and J.L.N. Carvalho. 2017. Comprehensive assessment of sugarcane straw: Implications for biomass and bioenergy production. Biofuels, Bioproducts & Biorefining 11: 488–504. https://doi.org/10.1002/bbb.1760.

    Article  CAS  Google Scholar 

  • Mira, A.B., H. Cantarella, G.J.M. Souza-Netto, L.A. Moreira, M.Y. Kamogawa, and R. Otto. 2017. Optimizing urease inhibitor usage to reduce ammonia emission following urea application over crop residues. Agriculture, Ecosystems & Environment 248: 105–112. https://doi.org/10.1016/j.agee.2017.07.032.

    Article  CAS  Google Scholar 

  • MME—Brazil Resolução N°15, de 18 de agosto de 2020 (Renovabio)—Decarbonization Targets. Ministério de Minas e Energia—CNPE: Conselho Nacional de Política Energética. 2020. https://www.gov.br/mme/pt-br/assuntos/conselhos-e-comites/cnpe/resolucoes-do-cnpe/arquivos /2020/resolucao_8 _cnpe_metas_ compulsorias.pdf

  • Mohan, C., P.Y.T. Shibao, F.F.P. de Paula, D. Toyama, M.A.S. Vieira, A. Figueira, D. Scotton, A. Soares-Costa, and F. Henrique-Silva. 2021. hRNAi-mediated knock-down of Sphenophorus levis V-ATPase E in transgenic sugarcane (Saccharum spp interspecific hybrid) affects the insect growth and survival. Plant Cell Reports 40: 507–516. https://doi.org/10.1007/s00299-020-02646-5.

    Article  CAS  PubMed  Google Scholar 

  • Moore, C.C.S., A.R. Nogueira, and L. Kulay. 2017. Environmental and energy assessment of the substitution of chemical fertilizers for industrial wastes of ethanol production in sugarcane cultivation in Brazil. The International Journal of Life Cycle Assessment. 22: 628–643.

    Article  CAS  Google Scholar 

  • Moraes, E.R.; J.G. Mageste, R.M.Q. Lana, R.V. Silva, and R. Camargo, 2018. Sugarcane: organo-mineral fertilizers and biostimulants. In Sugarcane Technology & Research (Ed Alexandre Bosco de Oliveira) InTech Open. https://doi.org/10.5772/Intechopen.71493

  • Moreira, L.A., R. Otto, H. Cantarella, J.L. Junior, R.A. Azevedo, and A.B. de Mira. 2021. Urea- versus ammonium nitrate–based fertilizers for green sugarcane cultivation. Journal of Soil Science and Plant Nutrition 21 (2): 1329–1338. https://doi.org/10.1007/s42729-021-00443-x.

    Article  CAS  Google Scholar 

  • Mutton M.A., R. Rossetto and M.J.R. Mutton. 2010. Agricultural use of stillage. In: Sugarcane Bioethanol. R&D for Productivity and Sustainability 1. São Paulo, Blucher: Cortez L.A.B. 423–440

  • Navarrete, A.A., T.R. Diniz, L.P.P. Braga, G.G.Z. Silva, J.C. Franchini, R. Rossetto, R.A. Edwards, and S.M. Tsai. 2015. Multi-Analytical Approach Reveals Potential Microbial Indicators in Soil for Sugarcane Model Systems. PLoS ONE 10 (6): e0129765. https://doi.org/10.1371/journal.pone.0129765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neto, J.F., A.J. Franzluebbers, C.A.C. Crusciol, J.P.G. Rigon, J.C. Calonego, C.A. Rosolem, C.A.C. Nascimento, and L.C. Ribeiro. 2021. Soil carbon and nitrogen fractions and physical attributes affected by soil acidity amendments under no-till on Oxisol in Brazil. Geoderma Regional. 24: e00347. https://doi.org/10.1016/j.geodrs.2020.e00347.

    Article  Google Scholar 

  • Nicchio, B., C.C. Cardozo, and M.A.M. Vieira. 2020. Efeitos de substratos na qualidade de mudas pré-brotadas de cana-de-açúcar. PAB–Pesquisa Agropecuária Pernambucana. https://doi.org/10.12661/pap.2020.001.

    Article  Google Scholar 

  • Noronha, R. H. F. 2018. Plantio de mudas pré-brotadas (MPB) de cana de açúcar em sistemas de manejo conservacionista de solo. 78f. Tese (Doutorado em Agronomia) – Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias. Jaboticabal, 2018.

  • Ohashi, A.Y.P., R.C.M. Pires, R.V. Ribeiro, and A.L.B.O. Silva. 2015. Root growth and distribution in sugarcane cultivars fertigated by a subsurface drip system. Bragantia (São Paulo) 74: 131–138. https://doi.org/10.1590/1678-4499.0295

    Article  Google Scholar 

  • Ohashi, A. Y. P.; M.A. Xavier, J.C. Garcia, R.H. Petri, L.P.M. Silva, R.C.M. Pires. 2016. Crescimento e eficiência no uso da água de mudas pré-brotadas de cana-de-açúcar em diferentes substratos. In: 10º Congresso Nacional da Sociedade dos técnicos açucareiros e alcooleiros do Brasil. Ribeirão Preto. Anais. Ribeirão Preto: STAB: 212–216.

  • de Oliveira, E.C.A., F.J. Freire, R.I. de Oliveira, A.C. de Oliveira, and M.B.G. dos S. Freire. 2011. Acumulo e alocação de nutrientes em cana de açúcar. Rev Ciencia Agron 42 (3): 1343–1352. https://doi.org/10.1590/S1806-66902011000300002.

    Article  Google Scholar 

  • Oliveira, A.P.P., P.J. Thorburn, J.S. Biggs, E. Lima, L.H.C. Anjos, M.G. Pereira, and N.E. Zanotti. 2016. The response of sugarcane to trash retention and nitrogen in Brazilian coastal tableland: a simulation study. Experimental Agriculture 52: 69–86.

    Article  Google Scholar 

  • Oliveira, H.P., R.O. Melo, M.A. Baldotto, M.A. Andrade, and L.B. Baldotto. 2018. Performance of pre-sprouted sugarcane seedlings in response to the application of humic acid and plant growth-promoting bactéria. Semina: Ciências Agrárias. 39: 1365–1370. https://doi.org/10.5433/1679-0359.2018v39n3.

    Article  Google Scholar 

  • Otto, R., A.P. Silva, H.C.J. Franco, E.C.A. Oliveira, and P.C.O. Trivelin. 2011. High soil penetration resistance reduces sugarcane root system development. Soil and Tillage Research 117: 201–210. https://doi.org/10.1016/j.still.2011.10.005.

    Article  Google Scholar 

  • Otto, R., S.A.Q. Castro, E. Mariano, S.G.Q. Castro, H.C.J. Franco, and P.C.O. Trivelin. 2016. Nitrogen use efficiency for sugarcane-biofuel production: what is next? Bio Energy Research 9: 1272–1289. https://doi.org/10.1007/s12155-016-9763-x.

    Article  CAS  Google Scholar 

  • Otto, R., E. Mariano, R.L. Mulvaney, S.A. Khan, B.N. Boschiero, S. Tenelli, and P.C.O. Trivelin. 2019. Effect of previous soil management on sugarcane response to nitrogen fertilization. Scientia Agricola 76: 72–81.

    Article  CAS  Google Scholar 

  • Otto, R., G.J.M.D. Souza-Netto, R. Ferraz-Almeida, L.M. Altarugio, and J.L. Favarin. 2021. Multisite response of sugarcane to nitrogen rates and split applicadtion under Brazilian field conditions. Agronomy Journal 113 (1): 419–435. https://doi.org/10.1002/agj2.20461.

    Article  CAS  Google Scholar 

  • Paredes, D.S., A.C.R. Lessa, A.C.S. Selenobaldo, R.M. Boddey, S. Urquiaga, and B.J.R. Alves. 2014. Nitrous oxide emission and ammonia volatilization induced by vinasse and N fertilizer application in a sugarcane crop at Rio de Janeiro Brazil. Nutrient Cycling in Agroecosystems 98: 41–55. https://doi.org/10.1021/acs.est.5b01504.

    Article  CAS  Google Scholar 

  • Paredes, D.S., B.J.R. Alves, M.A. Santos, D. Bolonhezi, S.A.C. SantAnna, S. Urquiaga, M.A. Lima, and R.M. Boddey. 2015. Nitrous oxide and methane fluxes following ammonium sulfate and vinasse application on sugar cane soil. Environmental Science & Technology. 49: 11209–11217.

    Article  CAS  Google Scholar 

  • Pavinato, P.S., G.S. Rocha, M.R. Cherubin, I. Harris, D.L. Jones, P. John, and A. Whiters. 2020. Map of total phosphorus content in native soils of Brazil. Science & Agriculture 78 (6): e20200077. https://doi.org/10.1590/1678-992X-2020-0077.

    Article  Google Scholar 

  • Penatti, C.P. 2013. Sugarcane Fertilization: 30 years of Experience. CTC.

  • Pereira, V.R., G.C. Blain, A.M.H. Avila, R.C.M. Pires, and H.S. Pinto. 2018. Impacts of climate change on drought: changes to drier conditions at the beginning of the crop growing season in southern Brazil. Bragantia 77 (1): 201–211. https://doi.org/10.1590/1678-4499.2017007.

    Article  Google Scholar 

  • Pereira, W., J.S. Sousa, N. Schultz, and V.M. Reis. 2019. Sugarcane productivity as a function of nitrogen fertilization and inoculation with diazotrophic plant growth-promoting bacteria. Sugar Tech 21 (1): 71–82. https://doi.org/10.1007/s12355-018-0638-7.

    Article  CAS  Google Scholar 

  • Pereira, W., R.P. Oliveira, A. Pereira, J.S. Sousa, N. Schultz, S. Urquiaga, and V.M. Reis. 2021. Nitrogen acquisition and 15N-fertiliser recovery efficiency of sugarcane cultivar RB92579 inoculated with five diazotrophs. Nutrient Cycling in Agroecosystems 119: 37–50. https://doi.org/10.1007/s10705-020-10100-x.

    Article  CAS  Google Scholar 

  • Peres, J.G., C.F. Souza, and N.A. Lavorenti. 2010. Avaliação dos efeitos da cobertura de palha de cana de açúcar na umidade e na perda de água do solo. Engenharia Agricola. https://doi.org/10.1590/S0100-69162010000500010.

    Article  Google Scholar 

  • Perin, V., P.C. Sentelhas, H.B. Dias, and E.A. Santos. 2019. Sugarcane irrigation potential in Northwestern São Paulo, Brazil, by integrating Agrometeorological and GIS tools. Agricultural Water Management 220: 50–58. https://doi.org/10.1016/j.agwat.2019.04.012.

    Article  Google Scholar 

  • Pires, R.C.M., E.A.A. Barbosa, F.B. Arruda, E. Sakai, and T.J.A. Silva. 2014. Effects of subsurface drip irrigation and different planting arrangements on the yields and technological quality of sugarcane. Journal of Irrigation and Drainage Engineering 50140: 1–6.

    Google Scholar 

  • Pitombo, L.M., J.B. Carmo, M. Hollander, R. Rossetto, M.V. López, and H. Cantarella H and E.E. Kuramae. 2016. Exploring soil microbial 16S rRNA sequence data to increase carbon yield and nitrogen efficiency of a bioenergy crop. Glob Change Biol Bioenergy 8: 867–879. https://doi.org/10.1111/gcbb.12284.

    Article  CAS  Google Scholar 

  • Prado, H. 2013. Pedologia Facil – Aplicações em solos tropicais. 4a.ed. 2284p.

  • Prado, H. 2016. Pedologia fácil: aplicações em solos tropicais. Piracicaba: O Autor, 5. ed. 271 p.

  • Raij, B. v., H. Cantarella, J. A. Quaggio, and A. M. C. Furlani. 1997. Recomendações de adubação e calagem para o Estado de São Paulo. Instituto Agronômico, Campinas.

  • RAIS – Ministerio do Trabalho, 2019, https://observatoriodacana.com.br/listagem.php?idMn=146.

  • Ramos, N.P., C.S. Yamaguchi, A.P.C. Pires, R. Rossetto, R.A. Possenti, P.C. Packer, O.M.R. Cabral, and C.A. Andrade. 2016. Decomposição de palha de cana-de-açúcar recolhida em diferentes níveis após a colheita mecânica. Pesquisa Agropecuária Brasileira. 51 (9): 1492–1500.

    Article  Google Scholar 

  • Ramos, L.A., R.M.Q. Lana, G.H. Korndorfer, and A. de Andrade Silva. 2017. Effect of organo-mineral fertilizer and poultry litter waste on sugarcane yield and some plant and soil chemical property. African Journal of Agriculture Research 12 (1): 20–27. https://doi.org/10.5897/AJAR2016.11024.

    Article  Google Scholar 

  • Ramos, N.P., T.A. Vidal, R.R. Ramos, R. Rossetto and K.L. Nechet. 2016b. Carbon dioxide enrichment effects on the decomposition of sugarcane residues. Proceedings of the International Society of Sugar Cane Technologists 29:28–33. https://issct.org/wp-content/uploads/proceedings/2016/Agronomy-papers/11-NilzaPatriciaRamos.pdf

  • Rampazo, P.E., F.C.C. Marcos, M.A.P. Cipriano, P.E.R. Marchiori, S.S. Freitas, E.C. Machado, L.C. Nascimento, M. Brocchi, and R.V. Ribeiro. 2018. Rhizobacteria improve sugarcane growth and photosynthesis under well-watered conditions. Annals of Applied Biology 172 (3): 309–320. https://doi.org/10.1111/aab.12421.

    Article  CAS  Google Scholar 

  • Raposo Junior, J.L., J.A. Gomes Neto, and L.V.S. Sacramento. 2013. Evaluation of different foliar fertilizers on the crop production of sugarcane. Journal of Plant Nutrition. 36 (3): 459–469.

    Article  CAS  Google Scholar 

  • Reis, G.V., S.C. Siebeneichler, B. Lazzaretti, A.S. Sousa, M.A. Resplandes, R.B. Marques, A.P. Sousa, M.F.R. Santos, L.P. Rosa, and M. Oliveira. 2019. Growth response of pre-sprouted seedlings of sugarcane in the presence of the bacterium Herbarspirillum frisingense. International Journal of Environment, Agriculture and Biotechnology 4 (5): 1387–1391. https://doi.org/10.22161/ijeab.45.15.

    Article  Google Scholar 

  • Reis, V.M., B.J.R. Alves, A. Hartmann, E.K. James, and E.J. Zilli. 2020. Beneficial microorganisms in agriculture: the future of plant growth-promoting rhizobacteria. Plant and Soil 451: 1–3. https://doi.org/10.1007/s11104-020-04482-8CorpusID:212641853.

    Article  Google Scholar 

  • RENOVABIO – 2017. Lei No. 13576, de 26 de Dezembro de 2017—Dispõe Sobre a Política Nacional de Biocombustíveis (RenovaBio) e dá Outras Providências. 2017. Available online: https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2017/lei/l13576.htm.

  • Rossato, O.B., R. Foltran, C.A.C. Crusciol, J.M. Martello, R. Rossetto, and J.M. McCray. 2017. Soil fertility, ratoon sugarcane yield, and post-harvest residues as affected by surface application of lime and gypsum in southeastern Brazil. Bioscience Journal. https://doi.org/10.14393/BJ-v33n2-32755.

    Article  Google Scholar 

  • Rossetto, R., F.L.F. Dias, M.G.A. Landell, H. Cantarella, S. Tavares, A.C. Vitti, and D. Perecin. 2010a. N and K fertilisation of sugarcane ratoons harvested withou burning. Proceedings of the International Society of Sugar Cane Technologists 27: 1–8.

    Google Scholar 

  • Rossetto, R., F.L.F. Dias, A.C. Vitti, and H. Cantarella. 2010. Fertility maintenance and soil recovery in sugarcane crops. In Sugarcane bioethanol R&D for productivity and sustainability, ed. L.A.B. Cortez, 381–403. Blucher: São Paulo. https://doi.org/10.5151/BlucherOA-Sugarcane.

    Chapter  Google Scholar 

  • Rossetto, R., C.A.C. Crusciol, H. Cantarella, J.B. Carmo, and C.A.C. Nascimento. 2018. Residues uses and Environment sustainability. In Sustainable sugarcane production, ed. P. Singh and A.K. Tiwari, 161–187. New Jersey: Apple Academic Press.

    Google Scholar 

  • Rossetto, L., G.M.F. Pierangeli, E.E. Kuramae, M.A. Xavier, M.A.P. Cipriano, and A.P.D. Silveira. 2021. Sugarcane pre-sprouted seedlings produced with beneficial bacteria and arbuscular mycorrhizal fungi. Bragantia 80: e2721. https://doi.org/10.1590/1678-4499.20200276.

    Article  CAS  Google Scholar 

  • Rossetto, R., F. L. F. Dias, A. C. Vitti, H. Cantarella, and M. G. A. Landell. 2008. Manejo conservacionista e reciclagem de nutrientes em cana-de-açúcar tendo em vista a colheita mecânica Informativo Agronômico IPNI, 124 - Dec 2008 No. 124. p 8–13, Piracicaba.

  • Rossetto, R., A. Silva, A.C. Vitti, M. Piemonte, F.L.F. Dias and H. Cantarella. 2016. Concentrated vinasse applied in sugarcane ratoon: yield and soil fertility. 2016. ISSCT XXV Congress, Chiang Mai, Thailandia, https://issct.org/wp-content/uploads/proceedings/2016/Agronomy-posters/12-RaffaellaRossetto.pdf

  • Rossetto, R., H. Cantarella, F.L.F. Dias, M. Piemonte, I. Lyra and G.F. Brandão. 2019. Nitrogen volatilization losses from coated-urea products applied to sugarcane ratoon crops. Proceedings of the International Society of Sugar Cane Technologists, 30: 1200–1204, https://members.issct.org/prozone/docs/XXX%20ISSCT%20Congress%20Proceedings,%20Argentina%202–5%20September%202019/Agronomy%20posters/Rossetto-Nitrogen-volatilization-losses-from-coated-urea-products.pdf.

  • Sales, F.R., A.O. Silva, L.R. Sales, T.L. Rodrigues, F.M.S. Moreira, and M.A.C. Carneiro. 2021. Native arbuscular mycorrhizal fungi exhibit biotechnological potential in improvement of soil biochemical quality and in increasing yield in sugarcane cultivars. Sugar Tech. https://doi.org/10.1007/s12355-021-01016-z.

    Article  Google Scholar 

  • Santos, F.A., J.H. Queiroz, J.L. Colodette, S.A. Fernandes, and V.M. Guimarães. 2012. Potencial da palha de cana-de-açúcar para produção de etanol. Revisão Química Nova. https://doi.org/10.1590/S0100-40422012000500025.

    Article  Google Scholar 

  • Santos, L.C., R.D. Coelho, F.S. Barbosa, D.P.V. Leal, E.F. Fraga Júnior, T.H.S. Barros, J.V. Lizcano, and N.L. Ribeiro. 2019. Influence of deficit irrigation on accumulation and partitioning of sugarcane biomass under drip irrigation in commercial varieties. Agricultural Water Management 221: 322–333. https://doi.org/10.1016/j.agwat.2019.05.013.

    Article  Google Scholar 

  • Dos Santos, R.L., F.J. Freire, E.C.A. de Oliveira, P.C.O. Trivelin, M.B.G. dos Santos Freire, P. da Costa Bezerra, R.I. de Oliveira, and M.B.C. Santos. 2019a. Changes in biological nitrogen fixation and natural-abundance N isotopes of sugarcane under molybdenum fertilization. Sugar Tech 21 (6): 925–935. https://doi.org/10.1007/s12355-019-00717-w.

    Article  CAS  Google Scholar 

  • Santos, L.C., R.D. Coelho, F.S. Barbosa, D.P.V. Leal, E.F. Fraga Júnior, T.H.S. Barros, J.V. Lizcano, and N.L. Ribeiro. 2019b. Influence of deficit irrigation on accumulation and partitioning of sugarcane biomass under drip irrigation in commercial varieties. Agricultural Water Management 221: 322–333. https://doi.org/10.1016/j.agwat.2019.05.013.

    Article  Google Scholar 

  • Santos, S.G., V.A. Chaves, F.S. Ribeiro, G.C. Alves, and V.M. Reis. 2019c. Rooting and growth of pre-germinated sugarcane seedlings inoculated with diazothophic bacteria. Applied Soil Ecology 133: 12–23.

    Article  Google Scholar 

  • Scarpare, F.V., Q.J. van Lier, L. Camargo, R.C.M. Pires, S.T. Ruiz-Corrêa, A.H.F. Bezerra, G.J.C. Gava, and C.T.S. Dias. 2019. Tillage effects on soil physical condition and root growth associated with sugarcane water availability. Soil & Tillage Research 187: 110–118.

    Article  Google Scholar 

  • Scarpellini, J.R.; D. Bolonhezi, and T.L. Silva. 2014. Sugarcane in no-tillage and liming long-term experiment: fifteen years of results. In: World Congress on Conservation Agriculture, Winnipeg, Canada, Proceedings: 4–5.

  • Schneider, V.K., A. Soares-Costa, M. Chakravarthi, C. Ribeiro, S.M. Chabregas, M.C. Falco, and F.H. Silva. 2017. Transgenic sugarcane overexpressing CaneCPI-1 negatively affects the growth and development of the sugarcane weevil Sphenophorus levis. Plant Cell Reports 36: 193–201. https://doi.org/10.1007/s00299-016-2071-2.

    Article  CAS  PubMed  Google Scholar 

  • Schultz, N., J.A.D. Silva, J.S. Sousa, R.C. Monteiro, R.P. Oliveira, V.A. Chaves, W. Pereira, M.F.D. Silva, J.I. Baldani, R.M. Boddey, and V.M. Reis. 2014. Inoculation of sugarcane with diazotrophic bacteria. Revista Brasileira de Ciência do Solo 38: 407–414.

    Article  Google Scholar 

  • Seabra J.E.A., I.C. Macedo, H.L. Chum, C.E. Faroni, C.A. Sarto. 2011. Life cycle assessment of Brazilian sugarcane products: GHG emissions and energy use. Biofuels, Bioproducts & Biorefinery 5:519–532. https://doi.org/10.1002/bbb.289

    Article  CAS  Google Scholar 

  • Segnini, A., J.L.N. Carvalho, D. Bolonhezi, D.M.B.P. Milori, W.T.L. Silva, M.L. Simões, H. Cantarella, I.C. de Maria, and L. Martin-Neto. 2013. Carbon stock and humification index of organic matter affected by sugarcane straw and soil management. Science in Agriculture 70: 321–326. https://doi.org/10.1590/S0103-90162013000500006.

    Article  CAS  Google Scholar 

  • Shabbir, R., T. Javed, T.I. Afzal, A.E. Sabagh, A. Ali, O. Vicente, and P. Chen. 2021. Modern biotechnologies: innovative and sustainable approaches for the improvement of sugarcane tolerance to environmental stresses. Agronomy 11: 1042. https://doi.org/10.3390/agronomy11061042.

    Article  CAS  Google Scholar 

  • Sica, P. 2021. Sugarcane Breeding for Enhanced Fiber and its Impacts on Industrial Process. https://doi.org/10.5772/interchopen.95884

  • Signor, D., C.E.P. Cerri, and R. Conant. 2013. N2O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil. Environmental Research Letters 8: 015013. https://doi.org/10.1088/1748-9326/8/1/015013.

    Article  CAS  Google Scholar 

  • Silva, M.A., S.C. Cato, and A.G.F. Costa. 2010. Produtividade e qualidade tecnológica da soqueira de cana-de-açúcar submetida à aplicação de biorregulador e fertilizantes líquidos. Ciencia Rural 24 (2): 23–33.

    Google Scholar 

  • Silva, A., R. Rossetto, J. Bonnecine, M. Piemonte, and T. Muraoka. 2013. Net and Potential Nitrogen Mineralization in Soil with Sugarcane vinasse. Sugar Tech 21: 505–513.

    Google Scholar 

  • Silva, D.A.L., I. Delai, M.L.D. Montes, and A.R. Ometto. 2014. Life cycle assessment of the sugarcane bagasse electricity generation in Brazil. Renewable and Sustainable Energy Reviews 32: 532–547. https://doi.org/10.1016/j.rser.2013.12.056.

    Article  CAS  Google Scholar 

  • Silva, A.L.B.O., R.C.M. Pires, R.V. Ribeiro, E.C. Machado, G.C. Blain, and A.Y.P. Ohashi. 2016. Development, yield and quality attributes of sugarcane cultivars fertigated by subsurface drip irrigation. Revista Brasileira De Engenharia Agrícola e Ambiental 20: 525–532.

    Article  Google Scholar 

  • Silva, A.G.B., I.P. Lisboa, M.R. Cherubin, and C.E.P. Cerri. 2019. How much sugarcane straw is needed for covering the soil? Bioenerg. Res. 12: 858–864. https://doi.org/10.1007/s12155-019-10008-7.

    Article  CAS  Google Scholar 

  • Silveira, J.M.C., B.M. Candido, G.C. Silva, M.A. Xavier. Pavão, and R.C.M. Pires. 2020. Multiespectral and thermographic images for monitoring the water conditions of sugarcane. Irrigation 25: 689–696. https://doi.org/10.15809/irriga.2020v25n4p689-696

    Article  Google Scholar 

  • SMA – Secretaria Meio Ambiente, 2021. https://www.infraestruturameioambiente.sp.gov.br /2021/04/governo-de-sp-e-setor-sucroenergetico-apresentam-os-resultados-do-protocolo-etanol-mais-verde-safra-20–21/

  • Soares, J.R., H. Cantarella, and M.L.D.C. Menegale. 2012. Ammonia volatilization losses from surface applied urea with urease and nitrification inhibitors. Soil Biology and Biochemistry. 52: 82–89.

    Article  CAS  Google Scholar 

  • Soares, J.R., H. Cantarella, V.P. Vargas, J.B. Carmo, A.A. Martins, R.M. Sousa, and C.A. Andrade. 2015. Enhanced- efficiency fertilizers in nitrous oxide emissions from urea applied to sugarcane. Journal of Environmental Quality 44: 423–430. https://doi.org/10.2134/jeq2014.02.0096.

    Article  CAS  PubMed  Google Scholar 

  • Soltangheisi, A., P.J.A. Withers, P.S. Pavinato, M.R. Cherubin, R. Rossetto, J.B. Do Carmo, G.C. Rocha, and L.A. Martinelli. 2019. Improving phosphorus sustainability of sugarcane production in Brazil. GCB Bioenergy 11: 1444–1455. https://doi.org/10.1111/gcbb.12650.

    Article  CAS  PubMed  Google Scholar 

  • Soltangheisi, A., P.M. Haygarth, P.S. Pavinato, M.R. Cherubin, A.B. Teles, R.O. Bordonal, J.L.N. Carvalho, J.A. Withers, and L.A. Martinelli. 2021. Long term sugarcane straw removal affects soil phosphorus dynamics. Soil and Tillage Research. https://doi.org/10.1016/j.still.2020.104898.

    Article  Google Scholar 

  • Sousa R.T.X. 2014. Fertilizante organomineral para a produção de cana-de-açúcar. Uberlândia – MG/Brasil: PhD thesis in Agronomy) – Universidade Federal de Uberlândia; 87p.

  • Sousa, G.B., M.V. Martins Filho, and S.S.R. Matias. 2012. Perda de solo, matéria orgânica e nutrientes por erosão hídrica em uma vertente coberta com diferentes quantidades de palha de cana-de-açúcar em Guariba-SP. Engenharia Agrícola 32: 490–500. https://doi.org/10.1590/S0100-69162012000300008.

    Article  Google Scholar 

  • Sousa, A.C.M., Z.M.de Souza, R.M.P. Claret and J.L.R. Torres. 2017. Traffic Control with autopilot as an alternative to decrease soil compaction in sugarcane areas. Tropical and Subtropical Agroecosystems. Vol 20, n.1. http://www.revista.ccba.uady.mx/urn:ISSN:1870-0462-tsaes.v20i1.2283

  • Souza, G.S., Z.M. Souza, R.B. Silva, R.S. Barbosa, and F.S. Araújo. 2014. Effects of traffic control on the soil physical quality and the cultivation of sugarcane. Revista Brasileira De Ciência Do Solo 38: 135–146. https://doi.org/10.1590/S0100-06832014000100013.

    Article  Google Scholar 

  • Souza, G.S., Z.M. Souza, M. Cooper, and C.A. Tormena. 2015. Controlled traffic and soil physical quality of an Oxisol under sugarcane cultivation. Scientia Agricola 72: 270–277. https://doi.org/10.1590/0103-9016-2014-0078.

    Article  Google Scholar 

  • Suzel, A. 2020. Nova Cana transgênica. Pesquisa Fapesp 238: 79–81.

    Google Scholar 

  • Teixeira, W.G., R.T.X. Sousa, and G.H. Korndörfer. 2014. Response of sugarcane to doses of phosphorus provided by organomineral fertilizer. Bioscience Journal Uberlândia. 30 (6): 1729–1736.

    Google Scholar 

  • Tenelli, S., R. Otto, R.O. Bordonal, and J.L.N. Carvalho. 2021. How do Nitrogen fertilization and cover crop influence soil C-N stocks and subsequent yields of Sugarcane? Soil & Tillage Research 211: 104999. https://doi.org/10.1016/j.still.2021.104999.

    Article  Google Scholar 

  • Torsian, W.S. A.L.P Kikuti, H. Kikuti and C.E. Pereira.2020. Bioestimulantes no desenvolvimento da cana-de-açúcar. Magistra, Cruz das Almas – BA, V. 31, p. 625 – 634. https://magistraonline.ufrb.edu.br/index.php/magistra/article/view/963/454.

  • Trivelin, P.C.O., A.C. Vitti, M.W. Oliveira, G.J.C. Gava, and G.A. Sarries. 2002. Utilização de N e produtividade da cana de açucar (cana planta) em solo arenoso com incorporação de resíduos da cultura. Rev. Bras. Ciencia do Solo 26: 636–646. https://doi.org/10.1590/S0100-06832002000300008.

    Article  Google Scholar 

  • Trivelin, P.C.O., H.C.J. Franco, R. Otto, D.A. Ferreira, A.C. Vitti, C. Fortes, C.E. Faroni, E.C.A. Oliveira, and H. Cantarella. 2013. Impact of sugarcane trash on fertilizer requirements for Sao Paulo Brazil. Scientia Agricola 70: 345–352.

    Article  CAS  Google Scholar 

  • UNICA 2021. Union of the Sugarcane industries. Unicadata, Área cultivada com cana-de-açúcar, Mapeamento de área Centro-sul http://www.unicadata.com.br/. Accessed October, 21th, 2021.

  • Urquiaga, S., R.P. Xavier, R.F. de Morais, et al. 2012. Evidence from field nitrogen balance and 15N natural abundance data for the contribution of biological N2 fixation to Brazilian sugarcane varieties. Plant and Soil 356: 5–21. https://doi.org/10.1007/s11104-011-1016-3.

    Article  CAS  Google Scholar 

  • Xavier, M.A., M.G.A. Landell, M.P. Campana. 2014.Fatores de desuniformidade e kit de pré-brotação IAC para sistema de multiplicação de cana-de-açúcar – mudas pré-brotadas (MPB). Campinas: IAC, 2014. 22p. (Documentos no. 113).

  • Xavier, M.A., M.G.A. Landell, R.C.M. Pires, R. Rossetto, L.L. Dinardo-Miranda, D. Perecin, H. Prado, J.C. Garcia, A.C. Vitti, J. Fracasso, C.A.M. Azania, I.A. Anjos, A.M. Luz. 2020. Gemas brotadas de cana-de-açúcar: produção sustentável e utilização experimental na formação de áreas de multiplicação. DOC.IAC 115:52, ISSN 1809-7693.

  • Zambrosi, F.C.B., R.V. Ribeiro, E.C. Machado, J.C. Garcia, and J. C. 2017. Phosphorus deficiency impairs shoot regrowth of sugarcane varieties. Experimental Agriculture 53 (1): 1–11. https://doi.org/10.1017/S0014479715000290.

    Article  Google Scholar 

  • Zilliani, R.R. 2015. Influência de biorreguladores sobre a fisiologia e crescimento inicial de cana-deaçúcar submetida ao déficit hídrico (59p). Dissertação de Mestrado, Universidade do Oeste Paulista, Presidente Prudente, SP, Brasil

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaella Rossetto.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossetto, R., Ramos, N.P., de Matos Pires, R.C. et al. Sustainability in Sugarcane Supply Chain in Brazil: Issues and Way Forward. Sugar Tech 24, 941–966 (2022). https://doi.org/10.1007/s12355-022-01170-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-022-01170-y

Keywords

Navigation