Skip to main content
Log in

Effects of Different Stem Skin and Marrow Root Mesh Sizes in Sweet Sorghum Bagasse on the Release of Sugar in Hydrolysis

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

This study investigates the effects of different particle sizes of sweet sorghum stem skin and marrow on pretreatment and hydrolysis. The optimal pretreatment concentration was 3.5% acid and 6.5% alkali. The optimal pretreatment temperature was 35 °C. Solid recovery gradually decreased with an increase in mesh and achieved 41.05% at 100 mesh under selected pretreatment conditions. The surface of the pretreated stem skin and marrow became rugged and pores were emerged. In addition, pore size was larger compared with untreated specimens. Pore diameter Dv (d) could reach 57.4 μm. For enzymatic hydrolysis, 20 units/g cellulase and 40 units/g β-glucosidase were adopted, and ten types of monosaccharide were obtained, including glucose, xylose, arabinose, galactose, mannose, ribose, fucose, gluconic acid, gluconic acid and rhamnose. The total monosaccharide content for stem skin and marrow were reached 1381.99 ± 0.7 mg/kg at 100 mesh with a two-stage (alkali–acid) pretreatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akhtar, N., D. Goyal, and A. Goyal. 2017. Characterization of microwave-alkali-acid pre-treated rice straw for optimization of ethanol production via simultaneous saccharification and fermentation (SSF). Energy Conversion and Management 141: 133–144.

    Article  CAS  Google Scholar 

  • Amiri, H., K. Karimi, and H. Zilouei. 2014. Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production. Bioresource Technology 152: 450–456.

    Article  CAS  PubMed  Google Scholar 

  • Andrzejewski, B., G. Eggleston, and R. Powell. 2013. Pilot plant clarification of sweet sorghum juice and evaporation of raw and clarified juices. Industrial Crops and Products 49: 648–658.

    Article  CAS  Google Scholar 

  • Appiah-Nkansah, N.B., K. Zhang, W. Rooney, and D. Wang. 2018. Ethanol production from mixtures of sweet sorghum juice and sorghum starch using very high gravity fermentation with urea supplementation. Industrial Crops and Products 111: 247–253.

    Article  CAS  Google Scholar 

  • Badiei, M., N. Asim, J.M. Jahim, and K. Sopian. 2014. Comparison of chemical pretreatment methods for cellulosic biomass. APCBEE Procedia 9: 170–174.

    Article  CAS  Google Scholar 

  • Barcelos, C.A., R.N. Maeda, L.M.M. Santa Anna, and N. Pereira. 2016. Sweet sorghum as a whole-crop feedstock for ethanol production. Biomass and Bioenergy 94: 46–56.

    Article  CAS  Google Scholar 

  • Cai, J., W. Wu, and R. Liu. 2014. An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass. Renewable and Sustainable Energy Reviews 36: 236–246.

    Article  CAS  Google Scholar 

  • Cao, W., C. Sun, R. Liu, R. Yin, and X. Wu. 2012. Comparison of the effects of five pretreatment methods on enhancing the enzymatic digestibility and ethanol production from sweet sorghum bagasse. Bioresource Technology 111: 215–221.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho, W.S., J.A. Santana Júnior, T.J.P. de Oliveira, and C.H. Ataíde. 2017. Fast pyrolysis of sweet sorghum bagasse in a fluidized bed reactor: Product characterization and comparison with vapors generated in analytical pyrolysis. Energy 131: 186–197.

    Article  CAS  Google Scholar 

  • Chen, X., H. Li, S. Sun, X. Cao, and R. Sun. 2018. Co-production of oligosaccharides and fermentable sugar from wheat straw by hydrothermal pretreatment combined with alkaline ethanol extraction. Industrial Crops and Products 111: 78–85.

    Article  CAS  Google Scholar 

  • Choudhary, R., A.L. Umagiliyage, Y. Liang, T. Siddaramu, J. Haddock, and G. Markevicius. 2012. Microwave pretreatment for enzymatic saccharification of sweet sorghum bagasse. Biomass and Bioenergy 39: 218–226.

    Article  CAS  Google Scholar 

  • Ding, N., Y. Yang, H. Cai, J. Liu, L. Ren, J. Yang, and G.H. Xie. 2017. Life cycle assessment of fuel ethanol produced from soluble sugar in sweet sorghum stalks in North China. Journal of Cleaner Production 161: 335–344.

    Article  CAS  Google Scholar 

  • Erick, H.O., P.C. Esther, and O.S. Sergio. 2012. Effects of different acid hydrolyses on the conversion of sweet sorghum bagasse into C5 and C6 sugars and yeast inhibitors using response surface methodology. Bioresource Technology 119: 216–223.

    Article  CAS  Google Scholar 

  • Ganesh Kumar, C., M. Pradeep Kumar, S. Gupta, M. Shyam Sunder, K. Veera Mohana Rao, B. Jagadeesh, V. Swapna, and A. Kamal. 2014. Isolation and Characterization of Cellulose from Sweet Sorghum Bagasse. Sugar Tech 17 (4): 395–403.

    Article  CAS  Google Scholar 

  • Guragain, Y.N., J. De Coninck, F. Husson, A. Durand, and S.K. Rakshit. 2011. Comparison of some new pretreatment methods for second generation bioethanol production from wheat straw and water hyacinth. Bioresource Technology 102 (6): 4416–4424.

    Article  CAS  PubMed  Google Scholar 

  • Hu, F., and A. Ragauskas. 2012. Pretreatment and lignocellulosic chemistry. BioEnergy Research 5: 1043–1066.

    Article  CAS  Google Scholar 

  • Huang, Y.-F., W.-H. Kuan, and C.-Y. Chang. 2018. Effects of particle size, pretreatment, and catalysis on microwave pyrolysis of corn stover. Energy 143: 696–703.

    Article  CAS  Google Scholar 

  • Jafari, Y., H. Amiri, and K. Karimi. 2016. Acetone pretreatment for improvement of acetone, butanol, and ethanol production from sweet sorghum bagasse. Applied Energy 168: 216–225.

    Article  CAS  Google Scholar 

  • Jafari, Y., K. Karimi, and H. Amiri. 2017. Efficient bioconversion of whole sweet sorghum plant to acetone, butanol, and ethanol improved by acetone delignification. Journal of Cleaner Production 166: 1428–1437.

    Article  CAS  Google Scholar 

  • Jung, Y.H., I.J. Kim, H.K. Kim, and K.H. Kim. 2013. Dilute acid pretreatment of lignocellulose for whole slurry ethanol fermentation. Bioresource Technology 132: 109–114.

    Article  CAS  PubMed  Google Scholar 

  • Kaur, P., S.K. Uppal, C. Dhir, P. Sharma, and R. Kaur. 2014. Comparative study of chemical pretreatments and acid saccharification of bagasse of sugar crops for ethanol production. Sugar Tech 17 (4): 412–417.

    Article  CAS  Google Scholar 

  • Li, P., D. Cai, C. Zhang, S. Li, P. Qin, C. Chen, Y. Wang, and Z. Wang. 2016. Comparison of two-stage acid-alkali and alkali-acid pretreatments on enzymatic saccharification ability of the sweet sorghum fiber and their physicochemical characterizations. Bioresource Technology 221: 636–644.

    Article  CAS  PubMed  Google Scholar 

  • Lima, I., R. Bigner, and M. Wright. 2017. Conversion of sweet sorghum bagasse into value-added biochar. Sugar Tech 19 (5): 553–561.

    Article  CAS  Google Scholar 

  • Mishra, V., A.K. Jana, M.M. Jana, and A. Gupta. 2017. Improvement of selective lignin degradation in fungal pretreatment of sweet sorghum bagasse using synergistic CuSO4-syringic acid supplements. Journal of Environmental Management 193: 558–566.

    Article  CAS  PubMed  Google Scholar 

  • Poonsrisawat, A., S. Phuengjayaem, A. Petsom, and S. Teeradakorn. 2013. Conversion of sweet sorghum straw to sugars by dilute acid saccharification. Sugar Tech 15 (3): 322–327.

    Article  CAS  Google Scholar 

  • Rajan, K., and D.J. Carrier. 2014. Effect of dilute acid pretreatment conditions and washing on the production of inhibitors and on recovery of sugars during wheat straw enzymatic hydrolysis. Biomass and Bioenergy 62: 222–227.

    Article  CAS  Google Scholar 

  • Ratnavathi, C.V., S.K. Chakravarthy, V.V. Komala, U.D. Chavan, and J.V. Patil. 2011. Sweet sorghum as feedstock for biofuel production: A review. Sugar Tech 13 (4): 399–407.

    Article  CAS  Google Scholar 

  • Regassa, T.H., and C.S. Wortmann. 2014. Sweet sorghum as a bioenergy crop: Literature review. Biomass and Bioenergy 64: 348–355.

    Article  CAS  Google Scholar 

  • Reis, A.L.S., E.D. Damilano, R.S.C. Menezes, and M.A. de Morais Jr. 2016. Second-generation ethanol from sugarcane and sweet sorghum bagasses using the yeast Dekkera bruxellensis. Industrial Crops and Products 92: 255–262.

    Article  CAS  Google Scholar 

  • Saha, B.C., L.B. Iten, M.A. Cotta, and Y.V. Wu. 2005. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochemistry 40 (12): 3693–3700.

    Article  CAS  Google Scholar 

  • Santi, C., A.M.F. Milagres, and W. Carvalho. 2013. The effects of lignin removal and drying on the porosity and enzymatic hydrolysis of sugarcane bagasse. Cellulose 20: 3165–3177.

    Article  CAS  Google Scholar 

  • Shatalov, A.A., and H. Pereira. 2005. Kinetics of organosolv delignification of fibre crop Arundo donax L. Industrial Crops and Products 21: 203–210.

    Article  CAS  Google Scholar 

  • Singh, R.D., K. Bhuyan, J. Banerjee, J. Muir, and A. Arora. 2017. Hydrothermal and microwave assisted alkali pretreatment for fractionation of arecanut husk. Industrial Crops and Products 102: 65–74.

    Article  CAS  Google Scholar 

  • Taherzadeh, M.J., and K. Karimi. 2008. pretreatment of lignocellulosic waster to improve ethanol and biogas production: A review. International Journal of Molecular Sciences 9: 1621–1651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umagiliyage, A.L., R. Choudhary, Y. Liang, J. Haddock, and D.G. Watson. 2015. Laboratory scale optimization of alkali pretreatment for improving enzymatic hydrolysis of sweet sorghum bagasse. Industrial Crops and Products 74: 977–986.

    Article  CAS  Google Scholar 

  • Wang, P., J. Chang, Q. Yin, E. Wang, Q. Zhu, A. Song, and F. Lu. 2015. Effects of thermo-chemical pretreatment plus microbial fermentation and enzymatic hydrolysis on saccharification and lignocellulose degradation of corn straw. Bioresource Technology 194: 165–171.

    Article  CAS  PubMed  Google Scholar 

  • Wright, M., I. Lima, and R. Bigner. 2017. Stability and Use of Sweet Sorghum Bagasse. Sugar Tech 19 (5): 451–457.

    Article  CAS  Google Scholar 

  • Wright, M.S., I.M. Lima, R. Powell, and R.L. Bigner. 2018. Effect of compacting and ensiling on stabilization of sweet sorghum bagasse. Sugar Tech 20 (3): 357–363.

    Article  Google Scholar 

  • Wu, L., M. Arakane, M. Ike, M. Wada, T. Takai, M. Gau, and K. Tokuyasu. 2011. Low temperature alkali pretreatment for improving enzymatic digestibility of sweet sorghum bagasse for ethanol production. Bioresource Technology 102: 4793–4799.

    Article  CAS  PubMed  Google Scholar 

  • Yan, Z., J. Li, S. Chang, T. Cui, Y. Jiang, M. Yu, L. Zhang, G. Zhao, P. Qi, and S. Li. 2015. Lignin relocation contributed to the alkaline pretreatment efficiency of sweet sorghum bagasse. Fuel 158: 152–158.

    Article  CAS  Google Scholar 

  • Yesuf, J.N., and Y.N. Liang. 2014. Optimization of sugar release from sweet sorghum bagasse following solvation of cellulose and enzymatic hydrolysis using response surface methodology. Biotechnology Progress 30: 367–375.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, X.B., L.H. Zhang, and D.H. Liu. 2012a. Biomass recalcitrance part I: The chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioproducts and Biorefining 6: 465–482.

    Article  CAS  Google Scholar 

  • Zhao, X.B., L.H. Zhang, and D.H. Liu. 2012b. Biomass recalcitrance. Part II: fundamentals of different pretreatments to increase the enzymatic digestibility of lignocellulose. Biofuels, Bioproducts and Biorefining 6: 465–482.

    Article  CAS  Google Scholar 

  • Zhou, X., X.H. Lu, X.H. Li, Z.J. Xin, J.R. Xie, M.R. Zhao, L. Wang, W.Y. Du, and J.P. Liang. 2014a. Radiation induces acid tolerance of clostridium tyrobutyricum and enhances bioproduction of butyric acid through a metabolic switch. Biotechnology for Biofuels 7: 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, X., S. Wang, X.H. Lu, and J.P. Liang. 2014b. Comparison of the effects of high energy carbon heavy ion irradiation and Eucommia ulmoides Oliv. On biosynthesis butyric acid efficiency in clostridium tyrobutyricum. Bioresource Technology 161: 221–229.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, X., Z. Yang, T.T. Jiang, S.Y. Wang, J.P. Liang, X.H. Lu, and L. Wang. 2016. The acquisition of Clostridium tyrobutyricum mutants with improved bioproduction under acidic conditions after two rounds of heavy-ion beam irradiation. Scientific Reports 6: 29968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (Grant No.11105193), the CAS Light of West China talent training Program (Ke-Fa-Ren-Zi [2015] No. 77), National Science and Technology Major Project (2017ZX09101002-003-001) and the Natural Science Foundation of Gansu Provincial Sci. and Tech. Department (Grant No. 1506RJZA293).

Author information

Authors and Affiliations

Authors

Contributions

T.T.J. and X.Z. conceived, designed and supervised the study. T.T.J., X.Z., Y.L., A.L.J. and J.P.L. performed the experiments. T.T.J., X.Z., Y.L. and A.L.J. analysed the data. T.T.J., Y.L. and A.L.J. contributed reagents/materials/analysis tools. T.T.J. wrote the paper. X.Z. critically revised the manuscript. X.Z. was involved in final approval of the version to be published.

Corresponding author

Correspondence to Xiang Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, TT., Zhou, X., Liang, Y. et al. Effects of Different Stem Skin and Marrow Root Mesh Sizes in Sweet Sorghum Bagasse on the Release of Sugar in Hydrolysis. Sugar Tech 21, 421–436 (2019). https://doi.org/10.1007/s12355-018-0664-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-018-0664-5

Keywords

Navigation