Skip to main content
Log in

Stability and Use of Sweet Sorghum Bagasse

  • Research article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

With sweet sorghum production and subsequent accumulation of bagasse on the rise, it is important to look for novel uses for its by-products. Bagasse, the solid fibrous product left after sweet sorghum stalks are crushed to remove juice, is partially reapplied to the field to enhance subsequent crops. The majority of bagasse remains largely underutilized because more is produced than can be practically applied to fields. This study determined sweet sorghum bagasse chemical and microbiological properties for use as a fuel source. It was determined that sweet sorghum variety had no major effect on fuel value. Microbes have the potential to consume sugars and other beneficial compounds in bagasse, but our analysis of microbial counts showed that microorganisms did not reduce the fuel value of the bagasse tested. Sweet sorghum bagasse was also found to have favorable fuel value when compared to sugarcane bagasse, due to its lower ash and higher fixed carbon contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aksu, A., and T. Kutsal. 1986. Lactic acid production from molasses utilizing Lactobacillus delbrueckii and invertase together. Biotechnology Letters 8: 157–160.

    Article  CAS  Google Scholar 

  • Almodares, A., and A.R. Hadi. 2009. Production of bioethanol from sweet sorghum: A review. African Journal of Agricultural Research 4: 772–780.

    Google Scholar 

  • Almodares, A., R. Taheri, M. Chung, and M. Fathi. 2008. The effect of nitrogen and potassium fertilizers on growth parameters and carbohydrate contents of sweet sorghum cultivars. Journal of Environmental Biology 29: 849–852.

    PubMed  Google Scholar 

  • Aqel, H. 2012. Effects of pH-values, temperatures, sodium chloride, metal ions, sugars, and Tweens on the acid phosphatase activity by thermophilic Bacillus strains. European Journal of Scientific Research 75: 262–268.

    Google Scholar 

  • Aragon, D., S. Lu, and V. Kochergin. 2015. Conversion of energy cane and sweet sorghum into biofuels and chemicals: a modeling approach. In New crops: Bioenergy, biomaterials, and sustainability, ed. J. Janick, A. Whipkey, and C. Von Mark. Tucson, AZ: The University of Arizona.

    Google Scholar 

  • Ashori, A. 2008. Wood-plastic composites as promising green-composites for automotive industries. Bioresource Technology 99: 4661–4667. doi:10.1016/j.biortech.2007.09.043.

    Article  CAS  PubMed  Google Scholar 

  • Belaychi, L., and M. Delmas. 1995. Sweet sorghum: A quality raw material for the manufacturing of chemical paper pulp. Biomass and Bioenergy 8: 411–417. doi:10.1016/0961-9534(95)00046-1.

    Article  Google Scholar 

  • Bennett, A.S., and R.P. Anex. 2008. Farm-gate production costs of sweet sorghum as a bioethanol feedstock. Transactions of the ASABE 51: 603–613.

    Article  Google Scholar 

  • Bluemmel, M., S.S. Rao, S. Palaniswami, L. Shah, and B.V.S. Reddy. 2009. Evaluation of sweet sorghum (Sorghum bicolor L. Moench) used for bio-ethanol production in the context of optimizing whole plant utilization. Animal Nutrition and Feed Technology 9: 1–10.

    Google Scholar 

  • Boyaval, P. 1989. Lactic acid bacteria and metal ions. Le Lait INRA Editions. 69 (2): 87–113.

    Article  CAS  Google Scholar 

  • Bridgers, E.N., M.S. Chinn, M.W. Veal, and L.F. Stikeleather. 2011. Influence of juice preparations on the fermentability of sweet sorghum. Biological Engineering Transactions 4: 57–67.

    Article  CAS  Google Scholar 

  • Brierley, C.L. 1982. L’exploitation microbiologique des mines. Pour Science 60: 38–50.

    Google Scholar 

  • Broadhead, D.M., Coleman, O.H., and Freeman, K.C. 1970. Dale, a new variety of sweet sorghum for sirup production. Mississippi State University Agricultural Experiment Station, Information Sheet 1099.

  • Broadhead, D.M., Freeman, K.C., Coleman, O.H., and Zummo, N. 1974. Theis—A new variety of sweet sorghum for sirup production. Mississippi State University Agricultural Experiment Station, Information Sheet 1236.

  • Broadhead, D.M., Freeman, K.C., and Zummo, N. 1981. M 81E—A new variety of sweet sorghum. Mississippi State University Agricultural Experiment Station, Information Sheet 1309.

  • Brule, G. 1981. Les mineraux du lait et des oligoelements. Lait 62: 323–331.

    Article  Google Scholar 

  • Day, J.L., R.R. Duncan, P.L. Raymer, G.R. Lovell, D.S. Thompson, H.D. Garrett, and N. Zummo. 1995. TOP 76-6: A new sweet sorghum variety for sirup production. The Georgia Agricultural Experiment Stations, The University of Georgia, Athens, GA, USA, Research Report 634.

  • Demirbas, A. 2001. Relationships between lignin contents and heating values of biomass. Energy Conversion and Management 42: 183–188.

    Article  CAS  Google Scholar 

  • Eggleston, G., M. Cole, and B. Andrzejewski. 2013. New commercially viable processing technologies for the production of sugar feedstocks from sweet sorghum (Sorghum bicolor L. Moench) for biofuel and bioproducts manufacture. Sugar Tech 15: 232–249.

    Article  CAS  Google Scholar 

  • Eggleston, G., and I. Lima. 2015. Sustainability issues and opportunities in the sugar and sugar-bioproduct industries. Sustainability 7: 12209–12235. doi:10.3390/su70912209.

    Article  Google Scholar 

  • Ellwood, D.C., and D.W. Tempest. 1972. Effects of environment on bacterial wall content and composition. Advances in Microbial Physiology 7: 83–117.

    Article  CAS  Google Scholar 

  • Godin, B., F. Ghysel, R. Agneessens, T. Schmit, S. Gofflot, S. Lamaudiere, G. Sinnaeve, et al. 2010. Cellulose, hemicelluloses, lignin, and ash contents in various lignocellulosic crops for second generation bioethanol production. Biotechnologie, Agronomie, Societe et Environnement 14: 549–560.

    CAS  Google Scholar 

  • Harold, F.M. 1977. Membranes and energy transduction in bacteria. Current Topics in Bioenergetics 6: 83–149.

    Article  CAS  Google Scholar 

  • Hayek, S.A., A. Shahbazi, M. Worku, and A.A. Ibrahim. 2013. Enzymatic activity of Lactobacillus reuteri grown in a sweet potato based medium with the addition of metal ions. Springer Plus 2: 465.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibrahim, S.A., A.Y. Alazzeh, S.S. Awaisheh, D. Song, A. Shahbazi, and A.A. AbuGhazaleh. 2010. Enhancement of α- and β-galactosidase activity in Lactobacillus reuteri by different metal ions. Biological Trace Element Research 136 (1): 106–116.

    Article  CAS  PubMed  Google Scholar 

  • Kalyanasundaram, D., P. Sudharasan, and S.R.V. Kumar. 2008. Agronomic management of sweet sorghum for sustainable grain and sugar yield. Research on Crops 9: 21–23.

    Google Scholar 

  • Knight, S.G. 1951. Mineral metabolism. In Bacterial physiology, ed. C. Nerkman, and P.W. Wilson, 500–516. New York: Academic Press.

    Chapter  Google Scholar 

  • Kumar, C.G., M.P. Kumar, S. Gupta, M.S. Sunder, K.V.M. Rao, B. Jagadeesh, V. Swapna, and A. Kamal. 2015. Isolation and characterization of cellulose from sweet sorghum bagasse. Sugar Tech 17 (4): 395–403.

    Article  Google Scholar 

  • Legwaila, G.M., T.V. Balole, and S.K. Karikari. 2003. Review of sweet sorghum: A potential cash and forage crop in Botswana. UNISWA Journal of Agriculture 12: 5–14.

    Google Scholar 

  • Lima, I.M., D.L. Boykin, K.T. Klasson, and M. Uchimiya. 2014. Influence of post-treatment strategies on the properties of activated chars from broiler manure. Chemosphere. 95: 96–104.

    Article  CAS  PubMed  Google Scholar 

  • Mei, X., and R. Liu. 2009. The techno-economic assessement for the plant of solid substrate fermentation of refining ethanol from sweet sorghum stalk. International Journal of Global Energy Issues 31: 262.

    Article  Google Scholar 

  • Ozimek, L.K., G.J.W. Euverink, M.J.E.C. van der Maarel, and L. Dijkhuizen. 2005. Mutational analysis of the role of calcium ions in the Lactobacillus reuteri strain 121 fructosyltransferase (levansucrase and inulosucrase) enzymes. FEBS Letters 579 (5): 1124–1128.

    Article  CAS  PubMed  Google Scholar 

  • Palacios, M.C., M. Haros, C.M. Rosell, and Y. Sanz. 2005. Characterization of an acid phosphatase from Lactobacillus pentosus: regulation and biochemical properties. Journal of Applied Microbiology 98 (1): 229–237.

    Article  CAS  PubMed  Google Scholar 

  • Pandey, A., C.R. Soccol, P. Nigam, and V.T. Soccol. 2000. Biotechnological potential of agro-industrial residues. I: Sugarcane bagasse. Bioresource Technology 74: 69–80.

    Article  CAS  Google Scholar 

  • Parikh, J., S.A. Channiwala, and G.K. Ghosal. 2005. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel 84: 487–494.

    Article  CAS  Google Scholar 

  • Parikh, J., S.A. Channiwala, and G.K. Ghosal. 2007. A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel 86: 1710–1719.

    Article  CAS  Google Scholar 

  • Promkhambut, A., A. Younger, A. Polthanee, and C. Akkasaeng. 2010. Morphological and physiological responses of sorghum (Sorghum bicolor L. Moench) to water logging. Asian Journal of Plant Sciences 9: 183–193. doi:10.3923/ajps.2010.183.193.

    Article  Google Scholar 

  • Quaak, P., H. Knoef, and H. Stassen. 1999. Energy from biomass: a review of combustion and gasification technologies. World Bank Technical Paper No. 422. Energy Series. The World Bank, Washington, DC, USA.

  • Reddy, N., and Y. Yang. 2007. Structure and properties of natural cellulose fibers obtained from sorghum leaves and stems. Journal of Agriculture and Food Chemistry 55: 5569–5574.

    Article  CAS  Google Scholar 

  • Schaffert, R.E., and L.M. Gourley. 1982. Sorghum as an energy source. In Proceedings of the International Symposium on Sorghum, ICRISAT, Patacheru, Andhra Pradesh, India, 605-623.

  • Serna-Saldivar, S.O., and W.L. Rooney. 2014. Production and supply logistics of sweet sorghum as an energy feedstock. In Sustainable Bioenergy Production, ed. L. Wang, 193–212. Boca Raton, FL: CRC Press.

    Chapter  Google Scholar 

  • Smith, B.A., R.V. Romo, R.A. Smith, R.A. de la Cruz, and B.J. Lime. 1973. Production of raw sugar from sorghum juices. Sugar Journal 35: 22–27.

    CAS  Google Scholar 

  • Srinivasa Rao, P., C.G. Kumar, R.S. Prakasham, A.U. Rao, and B.V.S. Reddy. 2015. Sweet sorghum: Breeding and bioproducts. In Industrial Crops, ed. V.M.V. Cruz, and D.A. Dierig, 1–28. New York: Springer.

    Google Scholar 

  • Srinivasa Rao, P., S.S. Rao, N. Seetharama, A.V. Umakath, P.S. Reddy, B.V.S. Reddy, and C.L.L. Gowda. 2009. Sweet sorghum for biofuel and strategies for its improvement. Information Bulletin No. 77, p. 80. ICRISAT, Patancheru, Andhra Pradesh, India.

  • Srinivasa Rao, P., K.S. Vinutha, G.S. Anil Kumar, T. Chiranjeevi, A. Uma, P. Lal, R.S. Prakasham, et al. 2016. Sorghum: A multipurpose bioenergy crop. In Sorghum: State of the art and future perspectives, ed. Ignacio Ciampitti, and Vara Prasad, 1–26. Madison, WI: Agronomy Society of America.

    Google Scholar 

  • Tew, T.L., R.M. Cobill, and E.P. Richard. 2008. Evaluation of sweet sorghum and sorghum x sudangrass hybrids as feedstocks for ethanol production. Bioenergy Research. 1: 147–152.

    Article  Google Scholar 

  • Theerarattananoon, K., F. Xu, J. Wilson, R. Ballard, L. McKinney, S. Staggenborg, P. Vadlani, et al. 2011. Physical properties of pellets made from sorghum stalk, corn stover, wheat straw, and big bluestem. Industrial Crops and Products 33: 325–332.

    Article  CAS  Google Scholar 

  • Vietor, D.M., and F.R. Miller. 1990. Assimilation, partitioning, and nonstructural carbohydrates in sweet compared to grain sorghum. Crop Science 30: 1109–1115. doi:10.2135/cropsci1990.0011183X003000050030x.

    Article  CAS  Google Scholar 

  • Vinutha, K.S., L. Rayaprolu, K. Yadagiri, A.V. Umakanth, and P.S. Rao. 2014. Sweet sorghum research and development in India: Status and prospects. Sugar Tech 16: 133–143. doi:10.1007/s12355-014-0302-9.

    Article  Google Scholar 

  • Whitfield, M.B., M.S. Chinn, and M.W. Veal. 2012. Processing of materials derived from sweet sorghum for biobased products. Industrial Crops and Products 37: 362–375.

    Article  CAS  Google Scholar 

  • Wright, M., I. Lima, and R. Bigner. 2016. Microbial and physicochemical properties of sugarcane bagasse for potential conversion to value-added products. International Sugar Journal. 78: 10–18.

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Eric Petrie and staff at the USDA-ARS Sugarcane Research Unit’s Ardoyne Farm, Schriever, LA, USA; and Dr. Randy Powell, Steve Smith and Jared Lindley at Delta BioRenewables, Germantown, TN, USA. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Authors’ Contribution

All authors contributed to conception and design of the work, and data collection. M.W. and I.L. also analyzed and interpreted the data, and drafted and revised the manuscript.

Funding

This study was funded by the United States Department of Agriculture, Agricultural Research Service. No grants or other forms of outside funding were used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maureen Wright.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wright, M., Lima, I. & Bigner, R. Stability and Use of Sweet Sorghum Bagasse. Sugar Tech 19, 451–457 (2017). https://doi.org/10.1007/s12355-016-0503-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-016-0503-5

Keywords

Navigation