Skip to main content
Log in

Sign-changing Solutions for the Chern-Simons-Schrödinger Equation with Concave-convex Nonlinearities

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we study the existence of sign-changing solutions for the Chern-Simons-Schrödinger equation with concave-convex nonlinearities

$$\begin{aligned} \left\{ \begin{aligned}&-\Delta u+\omega u+\left( \frac{h^{2}(\vert x\vert )}{\vert x\vert ^{2}}+\int _{\vert x\vert }^{\infty }\frac{h(s)}{s}u^{2}(s)ds\right) u=\lambda K(|x|)|u|^{p-2}u+ |u|^{q-2}u \text { in}\,\,\mathbb {R}^2,\,\,\,\\&u\in H_r^1(\mathbb {R}^2), \end{aligned} \right. \end{aligned}$$
(0.1)

where \(\omega , \lambda >0\) and \( K\in L^{\frac{p}{2-p}}(\mathbb {R}^2, \mathbb {R}_{+}),\,\mathbb {R}_{+}:=(0,\infty ), \,1<p<2, \,q>6 \). Using constrained minimization arguments and the quantitative deformation lemma, we prove that Eq. (0.1) has a sign-changing solution \( u_{\lambda } \) with positive energy when there exists a constant \(\lambda ^{*}>0\) such that for any \(\lambda <\lambda ^{*}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Dancer, N.: Calculus of variations and partial differential equations. In: Buttazzo, G., Marino, A., Murthy, M.K.V. (eds.) Topics on Geometrical Evolution Problems and Degree Theory. Springer-Verlag, Berlin (2020) . (MR1757706)

    Google Scholar 

  2. Byeon, J., Huh, H., Seok, J.: Standing waves of nonlinear Schrödinger equations with the gauge field. J. Funct. Anal. 263, 1575–1608 (2012)

    Article  MathSciNet  Google Scholar 

  3. Byeon, J., Huh, H., Seok, J.: On standing waves with a vortex point of order N for the nonlinear Chern-Simons-Schrodinger equations. J. Differ. Equ. 261, 1285–1316 (2016)

    Article  MathSciNet  Google Scholar 

  4. Bobkov, V.: Least energy nodal solutions for elliptic equations with indefinite nonlinearity, Electron. J. Qual. Theory. Differ. Equ. 56, 1–15 (2014)

    Google Scholar 

  5. Chen, Z., Tang, X., Zhang, J.: Sign-changing multi-bump solutions for the Chern-Simons-Schrödinger equations in \(H^{1}({\mathbb{R}}^{2})\). Adv. Nonlinear Anal. 9, 1066–1091 (2019)

    Article  Google Scholar 

  6. Drábek, P., Pohǒzaev, S.I.: Positive solution for the p-Laplacian: application of the fibering method. Proc. R. Soc. Edinb. Sect. A. Math. 127(04), 703–726 (1997)

    Article  MathSciNet  Google Scholar 

  7. Deng, Y., Peng, S., Shuai, W.: Nodal standing waves for a gauged nonlinear Schrödinger equation in \({\mathbb{R}}^{2}\). J. Differ. Equ. 264, 4006–4035 (2018)

    Article  Google Scholar 

  8. Jackiw, R., Pi, S.: Classical and quantal nonrelativistic Chern-Simons theory. Phys. Rev. D. 42, 3500–3513 (1990)

    Article  MathSciNet  Google Scholar 

  9. Jackiw, R., Pi, S.: Soliton solutions to the gauged nonlinear Schrödinger equation on the plane. Phys. Rev. Lett. 64, 2969–2972 (1990)

    Article  MathSciNet  Google Scholar 

  10. Kang, J.-C., Li, Y.-Y., Tang, C.-L.: Sign-changing solutions for Chern-Simons-Schrödinger equations with Asymptotically 5-linear Nolinearity. Bull. Malays. Math. Sci. Soc. 44, 711–731 (2021)

    Article  MathSciNet  Google Scholar 

  11. Kang, J.C., Tang, C.L.: Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth. Communication Pure Applied Analysis. Appl. 19, 5239–5252 (2020)

    Article  Google Scholar 

  12. Li, G.B., Luo, X., Shuai, W.: Sign-changing solutions to a gauged nonlinear Schrödinger equation. J. Math. Anal. Appl. 455, 1559–1578 (2017)

    Article  MathSciNet  Google Scholar 

  13. Liang, W.N., Zhai, C.B.: Solutions to a gauged nonlinear Schrödinger equation with concave-convex nonlinearities without(AR) condition. Appl. Anal. 100, 1286–1300 (2021)

    Article  MathSciNet  Google Scholar 

  14. Liu, Z.S., Ouyang, Z.G., Zhang, J.J.: Existence and multiplicity of sign-changing standing waves for a gauged nonlinear Schrödinger equation in \({\mathbb{R}}^{2}\). Nonlinearity 32, 3082–3111 (2019)

    Article  MathSciNet  Google Scholar 

  15. Pomponio, A., Ruiz, D.: Boundary concentration of a gauged nonlinear Schrödinger equation on large balls. Calc. Var. Partial. Differ. Equ. 53, 289–316 (2015)

    Article  Google Scholar 

  16. Tang, X., Zhang, J., Zhang, W.: Existence and concentration of solutions for Chern-Simons-Schrödinger system with general nonlinearity. Res. Math. 71, 643–655 (2017)

    Article  Google Scholar 

  17. Willem, M.: Minimax Theorems. Birkhäuser Boston Inc, Boston, MA (1996)

    Book  Google Scholar 

  18. Xie, W., Chen, C.: Sign-changing solutions for the nonlinear Chern-Simons-Schrödinger equations. Appl. Anal. 99, 880–898 (2020)

    Article  MathSciNet  Google Scholar 

  19. Yang, Z.-L., Ou, Z.-Q.: Nodal solutions for Schrödinger-Poisson system with concave-convex nonlinearities. J. Math. Anal. Appl. 499, 125006 (2021)

    Article  Google Scholar 

  20. Zhang, J., Zhang, W., Xie, X.: Infinitely many soulutions for a gauged nonlinear Schrödinger equation. Appl. Math. Lett. 88, 21–27 (2019)

    Article  MathSciNet  Google Scholar 

  21. Zhang, J., Tang, X., Zhao, F.: On multiplicity and concentration of solutions for a gauged nonlinear Schrödinger equation. Appl. Anal. 99, 2001–2021 (2020)

    Article  MathSciNet  Google Scholar 

  22. Zhang, W., Mi, H., Liao, F.: Concentration behavior and multiplicity of solutions to a gauged nonlinear Schrödinger equation. Appl. Math. Lett. 107, 106437 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express sincere thanks to the referees and the handing editor for the valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Lei Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by National Natural Science Foundation of China (No. 11971393)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, ZF., Tang, CL. Sign-changing Solutions for the Chern-Simons-Schrödinger Equation with Concave-convex Nonlinearities. Qual. Theory Dyn. Syst. 21, 88 (2022). https://doi.org/10.1007/s12346-022-00621-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00621-x

Keywords

Mathematics Subject Classification

Navigation