Skip to main content
Log in

Boundary concentration of a Gauged nonlinear Schrödinger equation on large balls

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

This paper is motivated by a gauged Schrödinger equation in dimension 2 including the so-called Chern–Simons term. The radially symmetric case leads to an elliptic problem with a nonlocal defocusing term, in competition with a local focusing nonlinearity. In this work we pose the equations in a ball under homogeneous Dirichlet boundary conditions. By using singular perturbation arguments we prove existence of solutions for large values of the radius. Those solutions are located close to the boundary and the limit profile is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ambrosetti, A., Colorado, E., Ruiz, D.: Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 30, 85–112 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrosetti, A., Malchiodi, A.: Perturbation Methods and Semilinear Elliptic Problems on \({\mathbb{R}}^N\), Progress in Mathematics, vol. 240. Birkhäuser Verlag, Basel (2006)

  3. Ambrosetti, A., Malchiodi, A., Ni, W.-M.: Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres. II. Indiana Univ. Math. J. 53, 297–329 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bergé, L., de Bouard, A., Saut, J.C.: Blowing up time-dependent solutions of the planar Chern–Simons gauged nonlinear Schrödinger equation. Nonlinearity 8, 235–253 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Byeon, J., Huh, H., Seok, J.: Standing waves of nonlinear Schrödinger equations with the gauge field. J. Funct. Anal. 263(6), 1575–1608 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. D’Aprile, T., Wei, J.: Boundary concentration in radial solutions to a system of semilinear elliptic equations. J. Lond. Math. Soc. 74, 415–440 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hagen, C.: A new gauge theory without an elementary photon. Ann. Phys. 157, 342–359 (1984)

    Article  MathSciNet  Google Scholar 

  8. Hagen, C.: Rotational anomalies without anyons. Phys. Rev. D 31, 2135–2136 (1985)

    Article  MathSciNet  Google Scholar 

  9. Huh, H.: Blow-up solutions of the Chern–Simons–Schrödinger equations. Nonlinearity 22, 967–974 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Huh, H.: Standing waves of the Schrödinger equation coupled with the Chern–Simons gauge field. J. Math. Phys. 53(6), 063702, 8 pp (2012)

  11. Huh, H.: Energy Solution to the Chern–Simons–Schrödinger Equations, Abstract and Applied Analysis Volume 2013, Article ID 590653, 7 pp

  12. Jackiw, R., Pi, S.-Y.: Soliton solutions to the gauged nonlinear Schrödinger equations. Phys. Rev. Lett. 64, 2969–2972 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jackiw, R., Pi, S.-Y.: Classical and quantal nonrelativistic Chern–Simons theory. Phys. Rev. D 42, 3500–3513 (1990)

    Article  MathSciNet  Google Scholar 

  14. Jackiw, R., Pi, S.-Y.: Self-dual Chern–Simons solitons. Progr. Theor. Phys. Suppl. 107, 1–40 (1992)

    Article  MathSciNet  Google Scholar 

  15. Liu, B., Smith, P.: Global Wellposedness of the Equivariant Chern–Simons–Schrödinger Equation, preprint arXiv:1312.5567

  16. Liu, B., Smith, P., Tataru, D.: Local wellposedness of Chern–Simons–Schrödinger. Int. Math. Res. Notices. doi:10.1093/imrn/rnt161

  17. Oh, S.-J., Pusateri, F.: Decay and Scattering for the Chern–Simons–Schrödinger Equations, preprint arXiv:1311.2088

  18. Pomponio, A., Ruiz, D.: A Variational Analysis of a Gauged Nonlinear Schrödinger Equation, preprint arXiv:1306.2051

  19. Tarantello, G.: Self-Dual Gauge Field Vortices: An Analytical Approach, PNLDE 72. Birkhäuser, Boston (2007)

    Google Scholar 

Download references

Acknowledgments

This work has been partially carried out during a stay of A. P. in Granada. He would like to express his deep gratitude to the Departamento de Análisis Matemático for the support and warm hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ruiz.

Additional information

Communicated by A. Malchiodi.

A. P. is supported by M.I.U.R.–P.R.I.N. “Metodi variazionali e topologici nello studio di fenomeni non lineari”, by GNAMPA Project “Metodi Variazionali e Problemi Ellittici Non Lineari” and by FRA2011 “Equazioni ellittiche di tipo Born-Infeld”. D. R. is supported by the Spanish Ministry of Science and Innovation under Grant MTM2011-26717 and by J. Andalucia (FQM 116).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pomponio, A., Ruiz, D. Boundary concentration of a Gauged nonlinear Schrödinger equation on large balls. Calc. Var. 53, 289–316 (2015). https://doi.org/10.1007/s00526-014-0749-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-014-0749-2

Mathematics Subject Classification (2010)

Navigation