Skip to main content
Log in

Sign-Changing Solutions for Chern–Simons–Schrödinger Equations with Asymptotically 5-Linear Nonlinearity

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

In this paper, we study the following Chern–Simons–Schrödinger equation

$$\begin{aligned} {\left\{ \begin{array}{ll} \displaystyle -\Delta u+\omega u+\lambda \Big (\frac{h^{2}(|x|)}{|x|^{2}}+ \int _{|x|}^{+\infty }\frac{h(s)}{s}u^{2}(s)\hbox {d}s\Big )u=g(u) \quad \text{ in }\ {\mathbb {R}}^{2},\\ \displaystyle u\in H_r^1({\mathbb {R}}^{2}), \end{array}\right. } \end{aligned}$$

where \(\omega ,\lambda >0\) and \(h(s)=\frac{1}{2}\int _{0}^{s}ru^{2}(r)\hbox {d}r\). Since the nonlinearity g is asymptotically 5-linear at infinity, there would be a competition between g and the nonlocal term. By constrained minimization arguments and the quantitative deformation lemma, we prove the existence of least energy sign-changing radial solution, which changes sign exactly once. Further, we study the concentration of the least energy sign-changing radial solutions as \(\lambda \rightarrow 0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–345 (1983)

    Article  MathSciNet  Google Scholar 

  2. Byeon, J., Huh, H., Seok, J.: Standing waves of nonlinear Schrödinger equations with the gauge field. J. Funct. Anal. 263, 1575–1608 (2012)

    Article  MathSciNet  Google Scholar 

  3. Byeon, J., Huh, H., Seok, J.: On standing waves with a vortex point of order \(N\) for the nonlinear Chern–Simons–Schrödinger equations. J. Differ. Equ. 261, 1285–1316 (2016)

    Article  Google Scholar 

  4. Chen, S., Tang, X.: Ground state sign-changing solutions for a class of Schrödinger–Poisson type problems in \({\mathbb{R}}^3\). Z. Angew. Math. Phys. 67, 18 (2016)

    Article  Google Scholar 

  5. Chen, S., Tang, X.: Radial ground state sign-changing solutions for a class of asymptotically cubic or super-cubic Schrödinger–Poisson type problems. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113, 627–643 (2019)

    Article  MathSciNet  Google Scholar 

  6. Chen, S., Zhang, B., Tang, X.: Existence and concentration of semiclassical ground state solutions for the generalized Chern–Simons–Schrödinger system in \(H^1({\mathbb{R}}^2)\). Nonlinear Anal. 185, 68–96 (2019)

    Article  MathSciNet  Google Scholar 

  7. Coti Zelati, V., Rabinowitz, P.: Homoclinic type solutions for a semilinear elliptic PDE on \({\mathbb{R}}^n\). Commun. Pure Appl. Math. 45, 1217–1269 (1992)

    Article  Google Scholar 

  8. Chen, Z., Tang, X., Zhang, J.: Sign-changing multi-bump solutions for the Chern–Simons–Schrödinger equations in \(H^1({\mathbb{R}}^2)\). Adv. Nonlinear Anal. 9, 1066–1091 (2019)

    Article  Google Scholar 

  9. Deng, Y., Peng, S., Shuai, W.: Nodal standing waves for a gauged nonlinear Schrödinger equation in \({\mathbb{R}}^2\). J. Differ. Equ. 264, 4006–4035 (2018)

    Article  Google Scholar 

  10. Huh, H.: Blow-up solutions of the Chern–Simons–Schrödinger equations. Nonlinearity 22, 967–974 (2009)

    Article  MathSciNet  Google Scholar 

  11. Huh, H.: Standing waves of the Schrödinger equation coupled with the Chern–Simons gauge field. J. Math. Phys. 53, 8 (2012)

    MATH  Google Scholar 

  12. Jackiw, R., Pi, S.: Classical and quantal nonrelativistic Chern–Simons theory. Phys. Rev. D 42, 3500–3513 (1990)

    Article  MathSciNet  Google Scholar 

  13. Jackiw, R., Pi, S.: Soliton solutions to the gauged nonlinear Schrödinger equation on the plane. Phys. Rev. Lett. 64, 2969–2972 (1990)

    Article  MathSciNet  Google Scholar 

  14. Jiang, Y., Pomponio, A., Ruiz, D.: Standing waves for a gauged nonlinear Schrödinger equation with a vortex point. Commun. Contemp. Math. 18, 20 (2016)

    Article  Google Scholar 

  15. Li, G., Luo, X.: Normalized solutions for the Chern–Simons–Schrödinger equation in \({\mathbb{R}}^2\). Ann. Acad. Sci. Fenn. Math. 42, 405–428 (2017)

    Article  MathSciNet  Google Scholar 

  16. Li, G., Luo, X., Shuai, W.: Sign-changing solutions to a gauged nonlinear Schrödinger equation. J. Math. Anal. Appl. 455, 1559–1578 (2017)

    Article  MathSciNet  Google Scholar 

  17. Li, G., Li, Y., Tang, C.: Existence and concentrate behavior of positive solutions for Chern–Simons–Schrödinger systems with critical growth. Complex Var. Elliptic Equ. (2020). https://doi.org/10.1080/17476933.2020.1723564

    Article  Google Scholar 

  18. Liu, B., Smith, P.: Global wellposedness of the equivariant Chern–Simons–Schrödinger equation. Rev. Mat. Iberoam. 32, 751–794 (2016)

    Article  MathSciNet  Google Scholar 

  19. Liu, B., Smith, P., Tataru, D.: Local wellposedness of Chern–Simons–Schrödinger. Int. Math. Res. Not. IMRN (2014). https://doi.org/10.1093/imrn/rnt161

    Article  MATH  Google Scholar 

  20. Luo, X.: Existence and stability of standing waves for a planar gauged nonlinear Schrödinger equation. Comput. Math. Appl. 76, 2701–2709 (2018)

    Article  MathSciNet  Google Scholar 

  21. Pomponio, A., Ruiz, D.: Boundary concentration of a gauged nonlinear Schrödinger equation on large balls. Calc. Var. Partial Differ. Equ. 53, 289–316 (2015)

    Article  Google Scholar 

  22. Pomponio, A., Ruiz, D.: A variational analysis of a gauged nonlinear Schrödinger equation. J. Eur. Math. Soc. 17, 1463–1486 (2015)

    Article  MathSciNet  Google Scholar 

  23. Tang, X., Zhang, J., Zhang, W.: Existence and concentration of solutions for the Chern–Simons–Schrödinger system with general nonlinearity. Res. Math. 71, 643–655 (2017)

    Article  Google Scholar 

  24. Willem, M.: Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, vol. 24. Birkhäuser, Boston (1996)

    Google Scholar 

  25. Xie, W., Chen, C.: Sign-changing solutions for the nonlinear Chern–Simons–Schrödinger equations. Appl. Anal. 99, 880–898 (2020)

    Article  MathSciNet  Google Scholar 

  26. Zhang, J., Tang, X., Zhao, F.: On multiplicity and concentration of solutions for a gauged nonlinear Schrödinger equation. Appl. Anal. (2018). https://doi.org/10.1080/00036811.2018.1553033

    Article  Google Scholar 

  27. Zhang, J., Zhang, W., Xie, X.: Infinitely many solutions for a gauged nonlinear Schrödinger equation. Appl. Math. Lett. 88, 21–27 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Lei Tang.

Additional information

Communicated by Rosihan M. Ali.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by National Natural Science Foundation of China (No. 11971393).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, JC., Li, YY. & Tang, CL. Sign-Changing Solutions for Chern–Simons–Schrödinger Equations with Asymptotically 5-Linear Nonlinearity. Bull. Malays. Math. Sci. Soc. 44, 711–731 (2021). https://doi.org/10.1007/s40840-020-00974-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-020-00974-z

Keywords

Mathematics Subject Classification

Navigation