Skip to main content
Log in

Role of the Cerebellum in the Construction of Functional and Geometrical Spaces

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The perceptual and motor systems appear to have a set of movement primitives that exhibit certain geometric and kinematic invariances. Complex patterns and mental representations can be produced by (re)combining some simple motor elements in various ways using basic operations, transformations, and respecting a set of laws referred to as kinematic laws of motion. For example, point-to-point hand movements are characterized by straight hand paths with single-peaked-bell-shaped velocity profiles, whereas hand speed profiles for curved trajectories are often irregular and more variable, with speed valleys and inflections extrema occurring at the peak curvature. Curvature and speed are generically related by the 2/3 power law. Mathematically, such laws can be deduced from a combination of Euclidean, affine, and equi-affine geometries, whose neural correlates have been partially detected in various brain areas including the cerebellum and the basal ganglia. The cerebellum has been found to play an important role in the control of coordination, balance, posture, and timing over the past years. It is also assumed that the cerebellum computes forward internal models in relationship with specific cortical and subcortical brain regions but its motor relationship with the perceptual space is unclear. A renewed interest in the geometrical and spatial role of the cerebellum may enable a better understanding of its specific contribution to the action-perception loop and behavior’s adaptation. In this sense, we complete this overview with an innovative theoretical framework that describes a possible implementation and selection by the cerebellum of geometries adhering to different mathematical laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Morasso P. Spatial control of arm movements. Exp Brain Res [Internet]. 1981;42(2). http://link.springer.com/10.1007/BF00236911.

  2. Mosier KM, Scheidt RA, Acosta S, Mussa-Ivaldi FA. Remapping Hand Movements in a Novel Geometrical Environment. J Neurophysiol [Internet]. 2005;94(6):4362–72. https://www.physiology.org/doi/https://doi.org/10.1152/jn.00380.2005.

  3. Handzel AA, Flash T, Science C. Geometric methods in the study of Human Motor Control 1 background. Motor Control. 1999;6(September):1–18.

    Google Scholar 

  4. Bennequin D, Fuchs R, Berthoz A, Flash T. Movement Timing and Invariance Arise from Several Geometries. Sporns O, editor. PLoS Comput Biol [Internet]. 2009;5(7):e1000426. https://doi.org/10.1371/journal.pcbi.1000426.

  5. Belfiore J-C, Bennequin D. Topos and Stacks of Deep Neural Networks. 2021; http://arxiv.org/abs/2106.14587.

  6. Bennequin D, Berthoz A. Several Geometries for Movements Generations. In. 2017. pp. 13–42. http://link.springer.com/10.1007/978-3-319-51547-2_2.

  7. Abend W, Bizzi E, Morasso P. Human arm trajectory formation. Brain [Internet]. 1982;105(2):331–48. https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/105.2.331.

  8. Hollerbach JM, Flash T. Dynamic interactions between limb segments during planar arm movement. Biol Cybern [Internet]. 1982;44(1):67–77. http://link.springer.com/10.1007/BF00353957.

  9. Flash T, Hogan N. The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci [Internet]. 1985;5(7):1688–703. https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.05-07-01688.1985.

  10. Gordon J, Ghilardi MF, Ghez C. Accuracy of planar reaching movements. Exp Brain Res [Internet]. 1994;99(1):97–111. http://link.springer.com/10.1007/BF00241415.

  11. Ghilardi MF, Gordon J, Ghez C. Learning a visuomotor transformation in a local area of work space produces directional biases in other areas. J Neurophysiol [Internet]. 1995;73(6):2535–9. https://www.physiology.org/doi/10.1152/jn.1995.73.6.2535.

  12. Wolpert D, Ghahramani Z, Jordan M. Are arm trajectories planned in kinematic or dynamic coordinates? An adaptation study. Exp Brain Res [Internet]. 1995;103(3). http://link.springer.com/10.1007/BF00241505.

  13. Uno Y, Kawato M, Suzuki R. Formation and control of optimal trajectory in human multijoint arm movement. Biol Cybern [Internet]. 1989;61(2):89–101. https://link.springer.com/10.1007/BF00204593.

  14. Scott SH. Population vectors and motor cortex: neural coding or epiphenomenon? Nat Neurosci [Internet]. 2000;3(4):307–8. http://www.nature.com/articles/nn0400_307.

  15. Osu R, Kamimura N, Iwasaki H, Nakano E, Harris CM, Wada Y et al. Optimal Impedance Control for Task Achievement in the Presence of Signal-Dependent Noise. J Neurophysiol [Internet]. 2004;92(2):1199–215. https://www.physiology.org/doi/10.1152/jn.00519.2003.

  16. Harris CM, Wolpert DM. Signal-dependent noise determines motor planning. Nature [Internet]. 1998;394(6695):780–4. https://www.nature.com/articles/29528.

  17. Flash T, Hochner B. Motor primitives in vertebrates and invertebrates. Curr Opin Neurobiol [Internet]. 2005;15(6):660–6. https://linkinghub.elsevier.com/retrieve/pii/S0959438805001601.

  18. Mussa-Ivaldi FA, Solla SA. Neural primitives for motion control. IEEE J Ocean Eng. 2004;29(3):640–50.

    Article  Google Scholar 

  19. Jeannerod M, Arbib MA, Rizzolatti G, Sakata H. Grasping objects: the cortical mechanisms of visuomotor transformation. 18, Trends in Neurosciences. 1995.

  20. Schaal S, Ijspeert A, Billard A. Computational approaches to motor learning by imitation. Frith CD, Wolpert DM, editors. Philos Trans R Soc London Ser B Biol Sci [Internet]. 2003;358(1431):537–47. https://doi.org/10.1098/rstb.2002.1258.

  21. Giszter SF. Motor primitives—new data and future questions. Curr Opin Neurobiol [Internet]. 2015;33:156–65. https://linkinghub.elsevier.com/retrieve/pii/S095943881500077X.

  22. Konczak J. On the notion of motor primitives in humans and robots. Proc Fifth Int Work Epigenetic Robot Model Cogn Dev Robot Syst. 2005;47–53.

  23. Thomas G. Review of The Co-ordination and Regulation of Movements. Contemp Psychol A J Rev [Internet]. 1967;12(9):468–468. http://access.portico.org/stable?au=phzjjsvrj.

  24. Hart CB. Modular Premotor Drives and Unit Bursts as Primitives for Frog Motor Behaviors. J Neurosci [Internet]. 2004;24(22):5269–82. https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.5626-03.2004.

  25. Averbeck BB, Chafee MV, Crowe DA, Georgopoulos AP. Parallel processing of serial movements in prefrontal cortex. Proc Natl Acad Sci [Internet]. 2002;99(20):13172–7. https://doi.org/10.1073/pnas.162485599.

  26. Jing J. The Construction of Movement with Behavior-Specific and Behavior-Independent Modules. J Neurosci [Internet]. 2004;24(28):6315–25. https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.0965-04.2004.

  27. Polyakov F, Drori R, Ben-Shaul Y, Abeles M, Flash T. A compact representation of drawing movements with sequences of parabolic primitives. PLoS Comput Biol. 2009;5(7).

  28. Sosnik R, Hauptmann B, Karni A, Flash T. When practice leads to co-articulation: the evolution of geometrically defined movement primitives. Exp Brain Res [Internet]. 2004;156(4):422–38. http://link.springer.com/10.1007/s00221-003-1799-4.

  29. Zhang M, Sawchuk AA. Motion primitive-based human activity recognition using a bag-of-features approach. In: Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium [Internet]. New York, NY, USA: ACM; 2012. pp. 631–40. https://doi.org/10.1145/2110363.2110433.

  30. Bregler C. Learning and recognizing human dynamics in video sequences. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition [Internet]. IEEE Comput. Soc; pp. 568–74. http://ieeexplore.ieee.org/document/609382/.

  31. Jeannerod M. Object oriented action. In Insights into the reach to grasp movement. Bennett KMB CU, editor. Elsevier and North-Holland. 1994. 3–15 p.

  32. Schütz C, Schack T. Motor primitives of pointing movements in a three-dimensional workspace. Exp Brain Res [Internet]. 2013;227(3):355–65. http://link.springer.com/https://doi.org/10.1007/s00221-013-3516-2.

  33. von Hofsten C. Structuring of Early Reaching Movements: A Longitudinal Study. J Mot Behav [Internet]. 1991;23(4):280–92. http://www.tandfonline.com/doi/abs/https://doi.org/10.1080/00222895.1991.9942039.

  34. Konczak J, Borutta M, Topka H, Dichgans J. The development of goal-directed reaching in infants: hand trajectory formation and joint torque control. Exp Brain Res [Internet]. 1995;106(1). http://link.springer.com/https://doi.org/10.1007/BF00241365.

  35. Berthier NE. Learning to reach: A mathematical model. Dev Psychol [Internet]. 1996;32(5):811–23. http://doi.apa.org/getdoi.cfm?doi=10.1037/0012-1649.32.5.811.

  36. Krebs HI, Aisen ML, Volpe BT, Hogan N. Quantization of continuous arm movements in humans with brain injury. Proc Natl Acad Sci [Internet]. 1999;96(8):4645–9. https://doi.org/10.1073/pnas.96.8.4645.

  37. Stokoe WC. Sign Language Structure: An Outline of the Visual Communication Systems of the American Deaf. J Deaf Stud Deaf Educ [Internet]. 2005;10(1):3–37. https://academic.oup.com/jdsde/article-lookup/doi/https://doi.org/10.1093/deafed/eni001.

  38. Brentari D, González C, Seidl A, Wilbur R. Sensitivity to Visual Prosodic Cues in Signers and Nonsigners. Lang Speech [Internet]. 2011;54(1):49–72. http://journals.sagepub.com/doi/10.1177/0023830910388011.

  39. Huang X, Acero AWH. Spoken Language Processing_ A Guide to Theory, Algorithm, and System Development [Internet]. 2001. https://doc.lagout.org/science/0_ComputerScience/2_Algorithms/Spoken Language Processing_ A Guide to Theory%2 C Algorithm%2 C and System Development %5BHuang%2 C Acero %26 Hon 2001-05-05%5D.pdf.

  40. Browman CP, Goldstein L, Articulatory, Phonology. An Overview. Phonetica [Internet]. 1992;49(3–4):155–80. https://www.degruyter.com/document/doi/10.1159/000261913/html.

  41. Hintzman DL. Psychological review Schema Abstraction in a multiple-Trace Memory Model. Not Read. 1986;93(4):411–28.

    Google Scholar 

  42. Del Vecchio D, Murray RM, Perona P. Decomposition of human motion into dynamics-based primitives with application to drawing tasks. Automatica [Internet]. 2003;39(12):2085–98. https://linkinghub.elsevier.com/retrieve/pii/S0005109803002504.

  43. Flash T, Henis E. Arm Trajectory Modifications During Reaching Towards Visual Targets. J Cogn Neurosci [Internet]. 1991;3(3):220–30. https://direct.mit.edu/jocn/article/3/3/220/3033/Arm-Trajectory-Modifications-During-Reaching.

  44. Ivanenko YP, Poppele RE, Lacquaniti F. Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol [Internet]. 2004;556(1):267–82. https://onlinelibrary.wiley.com/doi/https://doi.org/10.1113/jphysiol.2003.057174.

  45. Ivanenko YP. Coordination of Locomotion with Voluntary Movements in Humans. J Neurosci [Internet]. 2005;25(31):7238–53. https://www.jneurosci.org/lookup/doi/https://doi.org/10.1523/JNEUROSCI.1327-05.2005.

  46. Clark DJ, Ting LH, Zajac FE, Neptune RR, Kautz SA. Merging of Healthy Motor Modules Predicts Reduced Locomotor Performance and Muscle Coordination Complexity Post-Stroke. J Neurophysiol [Internet]. 2010;103(2):844–57. https://www.physiology.org/doi/https://doi.org/10.1152/jn.00825.2009.

  47. Dominici N, Ivanenko YP, Cappellini G, D’Avella A, Mondì V, Cicchese M, et al. Locomotor primitives in newborn babies and their development. Sci (80-). 2011;334(6058):997–9.

    Article  CAS  Google Scholar 

  48. Hinnekens E, Barbu-roth M, Do M, Berret B, Teulier C. Generating variability from motor primitives during infant locomotor development. bioRxiv. 2022.

  49. Woodworth RS. Accuracy of voluntary movement. Psychol Rev Monogr Suppl [Internet]. 1899;3(3):i–114. http://doi.apa.org/getdoi.cfm?doi=10.1037/h0092992.

  50. Soechting J, Lacquaniti F. Invariant characteristics of a pointing movement in man. J Neurosci [Internet]. 1981;1(7):710–20. https://www.jneurosci.org/lookup/doi/https://doi.org/10.1523/JNEUROSCI.01-07-00710.1981.

  51. Roitman AV, Massaquoi SG, Takahashi K, Ebner TJ. Kinematic Analysis of Manual Tracking in Monkeys: Characterization of Movement Intermittencies During a Circular Tracking Task. J Neurophysiol [Internet]. 2004;91(2):901–11. https://www.physiology.org/doi/https://doi.org/10.1152/jn.00261.2003.

  52. Georgopoulos AP, Kalaska JF, Massey JT. Spatial trajectories and reaction times of aimed movements: effects of practice, uncertainty, and change in target location. J Neurophysiol [Internet]. 1981;46(4):725–43. https://www.physiology.org/doi/https://doi.org/10.1152/jn.1981.46.4.725.

  53. Gutfreund Y, Flash T, Yarom Y, Fiorito G, Segev I, Hochner B. Organization of Octopus Arm Movements: A Model System for Studying the Control of Flexible Arms. J Neurosci [Internet]. 1996;16(22):7297–307. https://www.jneurosci.org/lookup/doi/https://doi.org/10.1523/JNEUROSCI.16-22-07297.1996.

  54. Gutfreund Y, Flash T, Fiorito G, Hochner B. Patterns of Arm Muscle Activation Involved in Octopus Reaching Movements. J Neurosci [Internet]. 1998;18(15):5976–87. https://www.jneurosci.org/lookup/doi/https://doi.org/10.1523/JNEUROSCI.18-15-05976.1998.

  55. Lackner JR, Dizio P. Rapid adaptation to Coriolis force perturbations of arm trajectory. J Neurophysiol [Internet]. 1994;72(1):299–313. https://www.physiology.org/doi/https://doi.org/10.1152/jn.1994.72.1.299.

  56. Flanagan JR, Rao AK. Trajectory adaptation to a nonlinear visuomotor transformation: evidence of motion planning in visually perceived space. J Neurophysiol [Internet]. 1995;74(5):2174–8. https://www.physiology.org/doi/https://doi.org/10.1152/jn.1995.74.5.2174.

  57. Wolpert D, Ghahramani Z, Jordan M. Perceptual distortion contributes to the curvature of human reaching movements. Exp Brain Res [Internet]. 1994;98(1). http://link.springer.com/https://doi.org/10.1007/BF00229120.

  58. Gulletta G, Silva EC, Erlhagen e, Meulenbroek W, Costa R, Bicho MFP. E. A Human-like Upper-limb Motion Planner: Generating naturalistic movements for humanoid robots. Int J Adv Robot Syst [Internet]. 2021;18(2):172988142199858. http://journals.sagepub.com/doi/https://doi.org/10.1177/1729881421998585.

  59. Elliott D, Hansen S, Grierson LEM, Lyons J, Bennett SJ, Hayes SJ. Goal-directed aiming: Two components but multiple processes. Psychol Bull [Internet]. 2010;136(6):1023–44. http://doi.apa.org/getdoi.cfm?doi=10.1037/a0020958.

  60. Fradet L, Lee G, Dounskaia N. Origins of submovements in movements of elderly adults. J Neuroeng Rehabil [Internet]. 2008;5(1):28. https://jneuroengrehab.biomedcentral.com/articles/https://doi.org/10.1186/1743-0003-5-28.

  61. Dounskaia N, Wisleder D, Johnson T. Influence of biomechanical factors on substructure of pointing movements. Exp Brain Res [Internet]. 2005;164(4):505–16. http://link.springer.com/https://doi.org/10.1007/s00221-005-2271-4.

  62. Fradet L, Lee G, Dounskaia N. Origins of submovements during pointing movements. Acta Psychol (Amst) [Internet]. 2008;129(1):91–100. https://linkinghub.elsevier.com/retrieve/pii/S0001691808000632.

  63. Wisleder D, Dounskaia N. The role of different submovement types during pointing to a target. Exp Brain Res [Internet]. 2006;176(1):132–49. http://link.springer.com/https://doi.org/10.1007/s00221-006-0603-7.

  64. Fitts PM. The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol [Internet]. 1954;47(6):381–91. http://doi.apa.org/getdoi.cfm?doi=10.1037/h0055392.

  65. Doeringer JA, Hogan N. Intermittency in Preplanned Elbow Movements Persists in the Absence of Visual Feedback. J Neurophysiol [Internet]. 1998;80(4):1787–99. https://www.physiology.org/doi/https://doi.org/10.1152/jn.1998.80.4.1787.

  66. Tunik E, Houk JC, Grafton ST. Basal ganglia contribution to the initiation of corrective submovements. Neuroimage [Internet]. 2009;47(4):1757–66. https://doi.org/10.1016/j.neuroimage.2009.04.077.

  67. Meyer DE, Abrams RA, Kornblum S, Wright CE, Keith Smith JE. Optimality in human motor performance: Ideal control of rapid aimed movements. Psychol Rev [Internet]. 1988;95(3):340–70. http://doi.apa.org/getdoi.cfm?doi=10.1037/0033-295X.95.3.340.

  68. Hsieh TY, Liu YT, Newell KM. Submovement control processes in discrete aiming as a function of space-time constraints. PLoS ONE. 2017;12(12):1–14.

    Article  Google Scholar 

  69. Berardelli A, Hallett M, Rothwell JC, Agostino R, Manfredi M, Thompson PD et al. Single–joint rapid arm movements in normal subjects and in patients with motor disorders. Brain [Internet]. 1996;119(2):661–74. https://academic.oup.com/brain/article-lookup/doi/https://doi.org/10.1093/brain/119.2.661.

  70. Cavina-Pratesi C, Monaco S, Fattori P, Galletti C, McAdam TD, Quinlan DJ et al. Functional Magnetic Resonance Imaging Reveals the Neural Substrates of Arm Transport and Grip Formation in Reach-to-Grasp Actions in Humans. J Neurosci [Internet]. 2010;30(31):10306–23. https://www.jneurosci.org/lookup/doi/https://doi.org/10.1523/JNEUROSCI.2023-10.2010.

  71. Caminiti R, Innocenti GM, Battaglia-Mayer A. Organization and evolution of parieto-frontal processing streams in macaque monkeys and humans. Neurosci Biobehav Rev [Internet]. 2015;56:73–96. https://linkinghub.elsevier.com/retrieve/pii/S0149763415001682.

  72. Cavina-Pratesi C, Ietswaart M, Humphreys GW, Lestou V, Milner AD. Impaired grasping in a patient with optic ataxia: Primary visuomotor deficit or secondary consequence of misreaching? Neuropsychologia [Internet]. 2010;48(1):226–34. https://linkinghub.elsevier.com/retrieve/pii/S0028393209003625.

  73. Connolly JD, Andersen RA, Goodale MA. FMRI evidence for a parietal reach region in the human brain. Exp Brain Res [Internet]. 2003;153(2):140–5. http://link.springer.com/https://doi.org/10.1007/s00221-003-1587-1.

  74. Fattori P, Breveglieri R, Bosco A, Gamberini M, Galletti C. Vision for Prehension in the Medial Parietal Cortex. Cereb Cortex [Internet]. 2015;bhv302. http://cercor.oxfordjournals.org/cgi/doi/https://doi.org/10.1093/cercor/bhv302.

  75. Culham JC, Valyear KF. Human parietal cortex in action. Curr Opin Neurobiol [Internet]. 2006;16(2):205–12. https://linkinghub.elsevier.com/retrieve/pii/S0959438806000304.

  76. Filimon F, Nelson JD, Hagler DJ, Sereno MI. Human cortical representations for reaching: Mirror neurons for execution, observation, and imagery. Neuroimage [Internet]. 2007;37(4):1315–28. https://linkinghub.elsevier.com/retrieve/pii/S1053811907005265.

  77. Cavina-Pratesi C, Connolly JD, Monaco S, Figley TD, Milner AD, Schenk T et al. Human neuroimaging reveals the subcomponents of grasping, reaching and pointing actions. Cortex [Internet]. 2018;98:128–48. https://linkinghub.elsevier.com/retrieve/pii/S0010945217301739.

  78. Rand MK, Shimansky Y, Stelmach GE, Bracha V, Bloedel JR. Effects of accuracy constraints on reach-to-grasp movements in cerebellar patients. Exp Brain Res [Internet]. 2000;135(2):179–88. http://link.springer.com/https://doi.org/10.1007/s002210000528.

  79. Zackowski KM, Thach WT, Bastian AJ. Cerebellar subjects show impaired coupling of reach and grasp movements. Exp Brain Res [Internet]. 2002;146(4):511–22. http://link.springer.com/https://doi.org/10.1007/s00221-002-1191-9.

  80. Brandauer B, Hermsdörfer J, Beck A, Aurich V, Gizewski ER, Marquardt C et al. Impairments of prehension kinematics and grasping forces in patients with cerebellar degeneration and the relationship to cerebellar atrophy. Clin Neurophysiol [Internet]. 2008;119(11):2528–37. https://linkinghub.elsevier.com/retrieve/pii/S1388245708009140.

  81. Naro A, Bramanti A, Leo A, Manuli A, Sciarrone F, Russo M et al. Effects of cerebellar transcranial alternating current stimulation on motor cortex excitability and motor function. Brain Struct Funct [Internet]. 2017;222(6):2891–906. http://link.springer.com/https://doi.org/10.1007/s00429-016-1355-1.

  82. Hermsdorf F, Fricke C, Stockert A, Classen J, Rumpf J-J. Motor Performance But Neither Motor Learning Nor Motor Consolidation Are Impaired in Chronic Cerebellar Stroke Patients. The Cerebellum [Internet]. 2020;19(2):275–85. http://link.springer.com/https://doi.org/10.1007/s12311-019-01097-3.

  83. Dimitrova A, de Greiff A, Schoch B, Gerwig M, Frings M, Gizewski ER et al. Activation of cerebellar nuclei comparing finger, foot and tongue movements as revealed by fMRI. Brain Res Bull [Internet]. 2006;71(1–3):233–41. https://linkinghub.elsevier.com/retrieve/pii/S0361923006002681.

  84. Weeks ACW, Ivanco TL, Leboutillier JC, Racine RJ, Petit TL. Sequential changes in the synaptic structural profile following long-term potentiation in the rat dentate gyrus. II. Induction / early maintenance phase. Synapse [Internet]. 2000;36(4):286–96. https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/(SICI)1098-2396(20000615)36:4%3C286::AID-SYN5%3E3.0.CO;2-T.

  85. Edelman S, Flash T. A model of handwriting. Biol Cybern [Internet]. 1987;57(1–2):25–36. http://link.springer.com/https://doi.org/10.1007/BF00318713.

  86. Wada Y, Kawato M. A theory for cursive handwriting based on the minimization principle. Biol Cybern [Internet]. 1995;73(1):3–13. http://link.springer.com/https://doi.org/10.1007/BF00199051.

  87. Adi-Japha E, Levin I, Solomon S. Emergence of representation in drawing: The relation between kinematic and referential aspects. Cogn Dev [Internet]. 1998;13(1):25–51. https://linkinghub.elsevier.com/retrieve/pii/S0885201498900193.

  88. Viviani P, McCollum G. The relation between linear extent and velocity in drawing movements. Neuroscience [Internet]. 1983;10(1):211–8. https://linkinghub.elsevier.com/retrieve/pii/0306452283900945.

  89. Ishikawa T, Tomatsu S, Izawa J, Kakei S. The cerebro-cerebellum: Could it be loci of forward models? Neurosci Res [Internet]. 2016;104:72–9. https://linkinghub.elsevier.com/retrieve/pii/S016801021500293X.

  90. Nagao S. Pontine nuclei-mediated cerebello-cerebral interactions and its functional role. The Cerebellum [Internet]. 2004;3(1):11–5. http://link.springer.com/10.1080/14734220310012181.

  91. Fortier PA, Kalaska JF, Smith AM. Cerebellar neuronal activity related to whole-arm reaching movements in the monkey. J Neurophysiol [Internet]. 1989;62(1):198–211. https://www.physiology.org/doi/https://doi.org/10.1152/jn.1989.62.1.198.

  92. Marple-Horvat DE, Stein JF. Cerebellar neuronal activity related to arm movements in trained rhesus monkeys. J Physiol [Internet]. 1987;394(1):351–66. https://onlinelibrary.wiley.com/doi/https://doi.org/10.1113/jphysiol.1987.sp016874.

  93. Coltz JD, Johnson MTV, Ebner TJ. Cerebellar Purkinje Cell Simple Spike Discharge Encodes Movement Velocity in Primates during Visuomotor Arm Tracking. J Neurosci [Internet]. 1999;19(5):1782–803. https://www.jneurosci.org/lookup/doi/https://doi.org/10.1523/JNEUROSCI.19-05-01782.1999.

  94. Fu Q-G, Flament D, Coltz JD, Ebner TJ. Relationship of Cerebellar Purkinje Cell Simple Spike Discharge to Movement Kinematics in the Monkey. J Neurophysiol [Internet]. 1997;78(1):478–91. https://www.physiology.org/doi/https://doi.org/10.1152/jn.1997.78.1.478.

  95. Ivry* RB, Diener HC. Impaired Velocity Perception in Patients with Lesions of the Cerebellum. J Cogn Neurosci [Internet]. 1991;3(4):355–66. https://direct.mit.edu/jocn/article/3/4/355/24736/Impaired-Velocity-Perception-in-Patients-with.

  96. Grill SE, Hallett M, Marcus C, McShane L. Disturbances of kinaesthesia in patients with cerebellar disorders. Brain [Internet]. 1994;117(6):1433–47. https://academic.oup.com/brain/article-lookup/doi/https://doi.org/10.1093/brain/117.6.1433.

  97. Hore J, Wild B, Diener HC. Cerebellar dysmetria at the elbow, wrist, and fingers. J Neurophysiol [Internet]. 1991;65(3):563–71. https://www.physiology.org/doi/https://doi.org/10.1152/jn.1991.65.3.563.

  98. Diener H-C, Dichgans J. Pathophysiology of cerebellar ataxia. Mov Disord [Internet]. 1992;7(2):95–109. https://onlinelibrary.wiley.com/doi/10.1002/mds.870070202.

  99. Schmahmann JD. Disorders of the Cerebellum: Ataxia, Dysmetria of Thought, and the Cerebellar Cognitive Affective Syndrome. J Neuropsychiatry Clin Neurosci [Internet]. 2004;16(3):367–78. https://doi.org/10.1176/jnp.16.3.367.

  100. Schutter DJLG, Van Honk J. The cerebellum in emotion regulation: a repetitive transcranial magnetic stimulation study. Cerebellum. 2009;8(1):28–34.

    Article  PubMed  Google Scholar 

  101. Cerminara NL, Apps R, Marple-Horvat DE. An internal model of a moving visual target in the lateral cerebellum. J Physiol [Internet]. 2009;587(2):429–42. http://doi.wiley.com/https://doi.org/10.1113/jphysiol.2008.163337.

  102. Herrero L, Yu M, Walker F, Armstrong DM, Apps R. Olivo-cortico-nuclear localizations within crus I of the cerebellum. J Comp Neurol [Internet]. 2006;497(2):287–308. https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/cne.20976.

  103. Hoover JE, Strick PL. The Organization of Cerebellar and Basal Ganglia Outputs to Primary Motor Cortex as Revealed by Retrograde Transneuronal Transport of Herpes Simplex Virus Type 1. J Neurosci [Internet]. 1999;19(4):1446–63. https://www.jneurosci.org/lookup/doi/https://doi.org/10.1523/JNEUROSCI.19-04-01446.1999.

  104. Middleton FA, Strick PL. Cerebellar Projections to the Prefrontal Cortex of the Primate. J Neurosci [Internet]. 2001;21(2):700–12. https://www.jneurosci.org/lookup/doi/https://doi.org/10.1523/JNEUROSCI.21-02-00700.2001.

  105. Longstaff MG, Heath RA. Space-time invariance in adult handwriting. Acta Psychol (Amst) [Internet]. 1997;97(2):201–14. https://linkinghub.elsevier.com/retrieve/pii/S0001691897000152.

  106. Jack WR. On the analysis of volentary muscular movements by certain new instruments. 1892;Jul 29(Pt(473–478). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1328391/pdf/janatphys00102-0001.pdf.

  107. Lacquaniti F, Terzuolo C, Viviani P. The law relating the kinematic and figural aspects of drawing movements. Acta Psychol (Amst) [Internet]. 1983;54(1–3):115–30. https://linkinghub.elsevier.com/retrieve/pii/0001691883900276.

  108. Viviani P, Cenzato M. Segmentation and coupling in complex movements. J Exp Psychol Hum Percept Perform [Internet]. 1985;11(6):828–45. http://doi.apa.org/getdoi.cfm?doi=10.1037/0096-1523.11.6.828.

  109. Viviani P, Stucchi N. Biological movements look uniform: Evidence of motor-perceptual interactions. J Exp Psychol Hum Percept Perform [Internet]. 1992;18(3):603–23. http://doi.apa.org/getdoi.cfm?doi=10.1037/0096-1523.18.3.603.

  110. Lacquaniti F, Terzuolo C, Viviani P. The law relating the kinematic and figural aspects of drawing movements. Acta Psychol (Amst). 1983;54(1–3):115–30.

    Article  CAS  PubMed  Google Scholar 

  111. Gribble PL, Ostry DJ. Origins of the power law relation between movement velocity and curvature: modeling the effects of muscle mechanics and limb dynamics. J Neurophysiol [Internet]. 1996;76(5):2853–60. https://www.physiology.org/doi/https://doi.org/10.1152/jn.1996.76.5.2853.

  112. Viviani P, Flash T. Minimum-jerk, two-thirds power law, and isochrony: converging approaches to movement planning. J Exp Psychol Hum Percept Perform [Internet]. 1995;21(1):32–53. http://doi.apa.org/getdoi.cfm?doi=10.1037/0096-1523.21.1.32.

  113. Huh D, Sejnowski TJ. Spectrum of power laws for curved hand movements. Proc Natl Acad Sci [Internet]. 2015;112(29). https://doi.org/10.1073/pnas.1510208112.

  114. Ivanenko YP, Grasso R, Macellari V, Lacquaniti F. Two-thirds power law in human locomotion: role of ground contact forces. Neuroreport [Internet]. 2002;13(9):1171–4. http://journals.lww.com/00001756-200207020-00020.

  115. Massey J, Lurito J, Pellizzer G, Georgopoulos A. Three-dimensional drawings in isometric conditions: relation between geometry and kinematics. Exp Brain Res [Internet]. 1992;88(3). http://link.springer.com/https://doi.org/10.1007/BF00228198.

  116. Vieilledent S, Kerlirzin Y, Dalbera S, Berthoz A. Relationship between velocity and curvature of a human locomotor trajectory. Neurosci Lett [Internet]. 2001;305(1):65–9. https://linkinghub.elsevier.com/retrieve/pii/S0304394001017980.

  117. De’Sperati C, Viviani P. The Relationship between Curvature and Velocity in Two-Dimensional Smooth Pursuit Eye Movements. J Neurosci [Internet]. 1997;17(10):3932–45. https://www.jneurosci.org/lookup/doi/https://doi.org/10.1523/JNEUROSCI.17-10-03932.1997.

  118. Hicheur H, Vieilledent S, Richardson MJE, Flash T, Berthoz A. Velocity and curvature in human locomotion along complex curved paths: a comparison with hand movements. Exp Brain Res. 2005;162(2):145–54.

    Article  CAS  PubMed  Google Scholar 

  119. Tasko SM, Westbury JR. Speed–curvature relations for speech-related articulatory movement. J Phon [Internet]. 2004;32(1):65–80. https://linkinghub.elsevier.com/retrieve/pii/S0095447003000068.

  120. Papaxanthis C, Paizis C, White O, Pozzo T, Stucchi N. The Relation between Geometry and Time in Mental Actions. Balasubramaniam R, editor. PLoS One [Internet]. 2012;7(11):e51191. https://doi.org/10.1371/journal.pone.0051191.

  121. Karklinsky M, Flash T. Timing of continuous motor imagery: the two-thirds power law originates in trajectory planning. J Neurophysiol [Internet]. 2015;113(7):2490–9. https://www.physiology.org/doi/https://doi.org/10.1152/jn.00421.2014.

  122. Viviani P, Schneider R. A developmental study of the relationship between geometry and kinematics in drawing movements. J Exp Psychol Hum Percept Perform [Internet]. 1991;17(1):198–218. http://doi.apa.org/getdoi.cfm?doi=10.1037/0096-1523.17.1.198.

  123. Schwartz AB. Direct Cortical Representation of Drawing. Science (80-) [Internet]. 1994;265(5171):540–2. https://www.science.org/doi/https://doi.org/10.1126/science.8036499.

  124. Zago M, Matic A, Flash T, Gomez-Marin A, Lacquaniti F. The speed-curvature power law of movements: a reappraisal. Exp Brain Res [Internet]. 2018;236(1):69–82. http://link.springer.com/https://doi.org/10.1007/s00221-017-5108-z.

  125. Thomassen AJWM, Teulings H-L, Time. Size and shape in handwriting: exploring Spatio-temporal relationships at different levels. Behav: Time, Mind; 1985. pp. 253–63.

    Google Scholar 

  126. Wann J, Nimmo-Smith I, Wing AM. Relation between velocity and curvature in Movement: equivalence and divergence between a Power Law and a minimum-jerk model. J Exp Psychol Hum Percept Perform. 1988;14(4):622–37.

    Article  CAS  PubMed  Google Scholar 

  127. Schaal S, Sternad D. Origins and violations of the 2/3 power law in rhythmic three-dimensional arm movements. Exp Brain Res. 2001;136(1):60–72.

    Article  CAS  PubMed  Google Scholar 

  128. Viviani P, Mounoud P. Perceptuomotor Compatibility in Pursuit Tracking of Two-Dimensional Movements. J Mot Behav [Internet]. 1990;22(3):407–43. http://www.tandfonline.com/doi/abs/https://doi.org/10.1080/00222895.1990.10735521.

  129. De’Sperati C, Stucchi N. Visual tuning to kinematics of biological motion: the role of eye movements. Exp Brain Res [Internet]. 1995;105(2). http://link.springer.com/https://doi.org/10.1007/BF00240961.

  130. Levit-Binnun N, Schechtman E, Flash T. On the similarities between the perception and production of elliptical trajectories. Exp Brain Res [Internet]. 2006;172(4):533–55. http://link.springer.com/https://doi.org/10.1007/s00221-006-0355-4.

  131. Casile A, Dayan E, Caggiano V, Hendler T, Flash T, Giese MA. Neuronal Encoding of Human Kinematic Invariants during Action Observation. Cereb Cortex [Internet]. 2010;20(7):1647–55. https://academic.oup.com/cercor/article-lookup/doi/https://doi.org/10.1093/cercor/bhp229.

  132. Dayan E, Casile A, Levit-Binnun N, Giese MA, Hendler T, Flash T. Neural representations of kinematic laws of motion: Evidence for action-perception coupling. Proc Natl Acad Sci [Internet]. 2007;104(51):20582–7. http://www.pnas.org/lookup/doi/https://doi.org/10.1073/pnas.0710033104.

  133. Dayan E, Inzelberg R, Flash T. Altered Perceptual Sensitivity to Kinematic Invariants in Parkinson’s Disease. Beeler JA, editor. PLoS One [Internet]. 2012;7(2):e30369. https://doi.org/10.1371/journal.pone.0030369.

  134. Van der Gon Denier JJ, Thuring JP. The guiding of human writing movements. Kybernetik [Internet]. 1965;2(4):145–8. https://link.springer.com/https://doi.org/10.1007/BF00272310.

  135. Moran DW, Schwartz AB. Motor Cortical Representation of Speed and Direction During Reaching. J Neurophysiol [Internet]. 1999;82(5):2676–92. https://www.physiology.org/doi/https://doi.org/10.1152/jn.1999.82.5.2676.

  136. Schwartz AB, Moran DW. Motor Cortical Activity During Drawing Movements: Population Representation During Lemniscate Tracing. J Neurophysiol [Internet]. 1999;82(5):2705–18. https://www.physiology.org/doi/https://doi.org/10.1152/jn.1999.82.5.2705.

  137. Spatz WB, Tigges J. Studies on the visual are MT in primates. II. Projection fibers to subcortical structures. Brain Res [Internet]. 1973;61:374–8. https://linkinghub.elsevier.com/retrieve/pii/0006899373905416.

  138. Schmahmann JD. An Emerging Concept. Arch Neurol [Internet]. 1991;48(11):1178. http://archneur.jamanetwork.com/article.aspx?doi=10.1001/archneur.1991.00530230086029.

  139. Glickstein M, Cohen JL, Dixon B, Gibson A, Hollins M, Labossiere E et al. Corticopontine visual projections in macaque monkeys. J Comp Neurol [Internet]. 1980;190(2):209–29. https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/cne.901900202.

  140. Leichnetz GR. Inferior frontal eye field projections to the pursuit-related dorsolateral pontine nucleus and middle temporal area (MT) in the monkey. Vis Neurosci [Internet]. 1989;3(2):171–80. https://www.cambridge.org/core/product/identifier/S0952523800004478/type/journal_article.

  141. Fries W. Pontine projection from striate and prestriate visual cortex in the macaque monkey: An anterograde study. Vis Neurosci [Internet]. 1990;4(3):205–16. https://www.cambridge.org/core/product/identifier/S0952523800003357/type/journal_article.

  142. Baumann O, Borra RJ, Bower JM, Cullen KE, Habas C, Ivry RB et al. Consensus Paper: The Role of the Cerebellum in Perceptual Processes. The Cerebellum [Internet]. 2015;14(2):197–220. http://link.springer.com/https://doi.org/10.1007/s12311-014-0627-7.

  143. Hagura N, Oouchida Y, Aramaki Y, Okada T, Matsumura M, Sadato N et al. Visuokinesthetic Perception of Hand Movement is Mediated by Cerebro–Cerebellar Interaction between the Left Cerebellum and Right Parietal Cortex. Cereb Cortex [Internet]. 2009;19(1):176–86. https://academic.oup.com/cercor/article-lookup/doi/https://doi.org/10.1093/cercor/bhn068.

  144. Nawrot M, Rizzo M. Motion perception deficits from midline cerebellar lesions in human. Vision Res [Internet]. 1995;35(5):723–31. https://linkinghub.elsevier.com/retrieve/pii/004269899400168L.

  145. Jokisch D, Troje NF, Koch B, Schwarz M, Daum I. Differential involvement of the cerebellum in biological and coherent motion perception. Eur J Neurosci [Internet]. 2005;21(12):3439–46. https://onlinelibrary.wiley.com/doi/https://doi.org/10.1111/j.1460-9568.2005.04145.x.

  146. Fierro B, Palermo A, Puma A, Francolini M, Panetta ML, Daniele O et al. Role of the cerebellum in time perception: A TMS study in normal subjects. J Neurol Sci [Internet]. 2007;263(1–2):107–12. https://linkinghub.elsevier.com/retrieve/pii/S0022510X07004509.

  147. Scocchia L, Bolognini N, Convento S, Stucchi N. Cathodal transcranial direct current stimulation can stabilize perception of movement: Evidence from the two-thirds power law illusion. Neurosci Lett [Internet]. 2015;609:87–91. https://linkinghub.elsevier.com/retrieve/pii/S0304394015301762.

  148. Dayan E, Casile A, Levit-Binnun N, Giese MA, Hendler T, Flash T. Neural representations of kinematic laws of motion: Evidence for action-perception coupling. Proc Natl Acad Sci [Internet]. 2007;104(51):20582–7. https://doi.org/10.1073/pnas.0710033104.

  149. Mussa-Ivaldi FA, Bizzi E. Motor learning through the combination of primitives. Philos Trans R Soc B Biol Sci. 2000;355(1404):1755–69.

    Article  CAS  Google Scholar 

  150. D’Angelo E, Casali S. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Front Neural Circuits [Internet]. 2013;6. http://journal.frontiersin.org/article/https://doi.org/10.3389/fncir.2012.00116/abstract.

  151. Wolpert DM, Miall RC, Kawato M. Internal models in the cerebellum. Trends Cogn Sci [Internet]. 1998;2(9):338–47. https://linkinghub.elsevier.com/retrieve/pii/S1364661398012212.

  152. Green AM, Meng H, Angelaki DE. A Reevaluation of the Inverse Dynamic Model for Eye Movements. J Neurosci [Internet]. 2007;27(6):1346–55. https://www.jneurosci.org/lookup/doi/https://doi.org/10.1523/JNEUROSCI.3822-06.2007.

  153. Ghasia FF, Meng H, Angelaki DE. Neural Correlates of Forward and Inverse Models for Eye Movements: Evidence from Three-Dimensional Kinematics. J Neurosci [Internet]. 2008;28(19):5082–7. https://www.jneurosci.org/lookup/doi/https://doi.org/10.1523/JNEUROSCI.0513-08.2008.

  154. Brooks VB, Thach WT. Cerebellar Control of Posture and Movement. In: Comprehensive Physiology [Internet]. Wiley; 1981. pp. 877–946. https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/cphy.cp010218.

  155. Glickstein M, Yeo C. The Cerebellum and Motor Learning., Cogn Neurosci J. [Internet]. 1990;2(2):69–80. https://direct.mit.edu/jocn/article/2/2/69/2990/The-Cerebellum-and-Motor-Learning.

  156. Allen GI, Tsukahara N. Cerebrocerebellar communication systems. Physiol Rev [Internet]. 1974;54(4):957–1006. https://www.physiology.org/doi/https://doi.org/10.1152/physrev.1974.54.4.957.

  157. McAfee SS, Liu Y, Sillitoe RV, Heck DH. Cerebellar Coordination of Neuronal Communication in Cerebral Cortex. Front Syst Neurosci [Internet]. 2022;15. https://www.frontiersin.org/articles/https://doi.org/10.3389/fnsys.2021.781527/full.

  158. Planton S, Jucla M, Roux F-E, Démonet J-F. The handwriting brain: A meta-analysis of neuroimaging studies of motor versus orthographic processes. Cortex [Internet]. 2013;49(10):2772–87. https://linkinghub.elsevier.com/retrieve/pii/S0010945213001391.

  159. HOLMES G. THE CEREBELLUM OF MAN. Brain [Internet]. 1939;62(1):1–30. https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/62.1.1.

  160. Belkhiria C, Driss T, Habas C, Jaafar H, Guillevin R, de Marco G. Exploration and Identification of Cortico-Cerebellar-Brainstem Closed Loop During a Motivational-Motor Task: an fMRI Study. The Cerebellum [Internet]. 2017;16(2):326–39. http://link.springer.com/https://doi.org/10.1007/s12311-016-0801-1.

  161. Küper M, Dimitrova A, Thürling M, Maderwald S, Roths J, Elles HG et al. Evidence for a motor and a non-motor domain in the human dentate nucleus — An fMRI study. Neuroimage [Internet]. 2011;54(4):2612–22. https://linkinghub.elsevier.com/retrieve/pii/S1053811910014588.

  162. Balsters JH, Ramnani N. Symbolic representations of action in the human cerebellum. Neuroimage [Internet]. 2008;43(2):388–98. https://linkinghub.elsevier.com/retrieve/pii/S1053811908008252.

  163. Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H et al. Consensus Paper: The Cerebellum’s Role in Movement and Cognition. The Cerebellum [Internet]. 2014;13(1):151–77. http://link.springer.com/https://doi.org/10.1007/s12311-013-0511-x.

  164. Leiner HC, Leiner AL, Dow RS. The role of the cerebellum in the human brain. Trends Neurosci [Internet]. 1993;16(11):453–4. https://linkinghub.elsevier.com/retrieve/pii/016622369390076X.

  165. Popa LS, Hewitt AL, Ebner TJ. Predictive and Feedback Performance Errors Are Signaled in the Simple Spike Discharge of Individual Purkinje Cells. J Neurosci [Internet]. 2012;32(44):15345–58. https://www.jneurosci.org/lookup/doi/https://doi.org/10.1523/JNEUROSCI.2151-12.2012.

  166. Blakemore S, Wolpert DM, Frith CD. Central cancellation of self-produced tickle sensation. 1998;635–40.

  167. Blakemore SJ, Goodbody SJ, Wolpert DM. Predicting the Consequences of Our Own Actions: The Role of Sensorimotor Context Estimation. J Neurosci [Internet]. 1998;18(18):7511–8. https://www.jneurosci.org/lookup/doi/https://doi.org/10.1523/JNEUROSCI.18-18-07511.1998.

  168. Marr D. A theory of cerebellar cortex. J Physiol [Internet]. 1969;202(2):437–70. https://onlinelibrary.wiley.com/doi/https://doi.org/10.1113/jphysiol.1969.sp008820.

  169. Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci [Internet]. 2008;9(4):304–13. https://www.nature.com/articles/nrn2332.

  170. Wolpert DM, Ghahramani Z, Jordan MI. An Internal Model for Sensorimotor Integration. Science (80-) [Internet]. 1995;269(5232):1880–2. https://www.science.org/doi/https://doi.org/10.1126/science.7569931.

  171. Paulin MG. The Role of the Cerebellum in Motor Control and Perception. Brain Behav Evol [Internet]. 1993;41(1):39–50. https://www.karger.com/Article/FullText/113822.

  172. Bell C, Bodznick D, Montgomery J, Bastian J. The Generation and Subtraction of Sensory Expectations within Cerebellum-Like Structures. Brain Behav Evol [Internet]. 1997;50(1):17–31. https://www.karger.com/Article/FullText/113352.

  173. Kuo AD. An optimal control model for analyzing human postural balance. IEEE Trans Biomed Eng [Internet]. 1995;42(1):87–101. http://ieeexplore.ieee.org/document/362914/.

  174. Glasauer S. Interaction of Semicircular Canals and Otoliths in the Processing Structure of the Subjective Zenith. Ann N Y Acad Sci [Internet]. 1992;656(1 Sensing and C):847–9. https://onlinelibrary.wiley.com/doi/https://doi.org/10.1111/j.1749-6632.1992.tb25272.x.

  175. Rao RPN, Ballard DH. Dynamic Model of Visual Recognition Predicts Neural Response Properties in the Visual Cortex. Neural Comput [Internet]. 1997;9(4):721–63. https://direct.mit.edu/neco/article/9/4/721-763/6066.

  176. Lewald J, Ehrenstein WH. Influence of head-to-trunk position on sound lateralization. Exp Brain Res [Internet]. 1998;121(3):230–8. http://link.springer.com/10.1007/s002210050456.

  177. Kawato M, Furukawa K, Suzuki R. A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern [Internet]. 1987;57(3):169–85. http://link.springer.com/https://doi.org/10.1007/BF00364149.

  178. Jordan M. Forward models: Supervised learning with a distal teacher. Cogn Sci [Internet]. 1992;16(3):307–54. http://doi.wiley.com/https://doi.org/10.1016/0364-0213(92)90036-T.

  179. Feder JL, Filchak KE. It’s about time: the evidence for host plant-mediated selection in the apple maggot fly, Rhagoletis pomonella, and its implications for fitness trade‐offs in phytophagous insects. Entomol Exp Appl [Internet]. 1999;91(1):211–25. https://onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1046/j.1570-7458.1999.00486.x.

  180. Prokopy RJ, Bennett EW, Bush GL, Mating, behavior in rhagoletis pomonella (Diptera. : Tephritidae): I. Site of assembly. Can Entomol [Internet]. 1971;103(10):1405–9. https://www.cambridge.org/core/product/identifier/S0008347X00047970/type/journal_article.

  181. Feder JL, Bush GL, A field test of differential host-plant usage between two sibling, species of rhagoletis pomonella fruit flies (Diptera: Tephritidae) and its consequences for sympatric models of speciation. Evolution (N Y) [Internet]. 1989;43(8):1813–9. https://onlinelibrary.wiley.com/doi/https://doi.org/10.1111/j.1558-5646.1989.tb02632.x.

  182. Jörges B, López-Moliner J. Gravity as a Strong Prior: Implications for Perception and Action. Front Hum Neurosci [Internet]. 2017;11. http://journal.frontiersin.org/article/10.3389/fnhum.2017.00203/full.

  183. Lacquaniti F, Borghese N, Carrozzo M. Internal models of limb geometry in the control of hand compliance. J Neurosci [Internet]. 1992;12(5):1750–62. https://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.12-05-01750.1992.

  184. Wolpert DM, Ghahramani Z. Computational principles of movement neuroscience. Nat Neurosci [Internet]. 2000;3(S11):1212–7. http://www.nature.com/articles/nn1100_1212.

  185. Grush R. The emulation theory of representation: Motor control, imagery, and perception. Behav Brain Sci [Internet]. 2004;27(3):377–96. https://www.cambridge.org/core/product/identifier/S0140525X04000093/type/journal_article.

  186. Miall RC, Wolpert DM. Forward models for physiological motor control. Neural Networks [Internet]. 1996;9(8):1265–79. https://linkinghub.elsevier.com/retrieve/pii/S0893608096000354.

  187. Nowak D, Hermsdörfer J, Rost K, Timmann D, Topka H. Predictive and reactive finger force control during catching in cerebellar degeneration. The Cerebellum [Internet]. 2004;3(4):227–35. http://link.springer.com/10.1080/14734220410019057.

  188. Nowak DA, Timmann D, Hermsdörfer J. Dexterity in cerebellar agenesis. Neuropsychologia [Internet]. 2007;45(4):696–703. https://linkinghub.elsevier.com/retrieve/pii/S0028393206003198.

  189. Miall RC, Christensen LOD, Cain O, Stanley J. Disruption of state estimation in the human lateral cerebellum. PLoS Biol. 2007;5(11):2733–44.

    Article  CAS  Google Scholar 

  190. Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT. Throwing while looking through prisms: I. Focal olivocerebellar lesions impair adaptation. Brain [Internet]. 1996;119(4):1183–98. https://academic.oup.com/brain/article-lookup/doi/https://doi.org/10.1093/brain/119.4.1183.

  191. Tseng Y, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ. Sensory Prediction Errors Drive Cerebellum-Dependent Adaptation of Reaching. J Neurophysiol [Internet]. 2007;98(1):54–62. https://www.physiology.org/doi/https://doi.org/10.1152/jn.00266.2007.

  192. Tanaka H, Ishikawa T, Lee J, Kakei S. The Cerebro-Cerebellum as a Locus of Forward Model: A Review. Front Syst Neurosci [Internet]. 2020;14. https://www.frontiersin.org/article/https://doi.org/10.3389/fnsys.2020.00019/full.

  193. Kawato M, Kuroda T, Imamizu H, Nakano E, Miyauchi S, Yoshioka T. Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. In. 2003. pp. 171–88. https://linkinghub.elsevier.com/retrieve/pii/S007961230342013X.

  194. Miall RC, Weir DJ, Wolpert DM, Stein JF. Is the Cerebellum a Smith Predictor? J Mot Behav [Internet]. 1993;25(3):203–16. http://www.tandfonline.com/doi/abs/https://doi.org/10.1080/00222895.1993.9942050.

  195. Fellows S, Ernst J, Schwarz M, Töpper R, Noth J. Precision grip deficits in cerebellar disorders in man. Clin Neurophysiol [Internet]. 2001;112(10):1793–802. https://linkinghub.elsevier.com/retrieve/pii/S138824570100623X.

  196. Serrien DJ, Wiesendanger M. Grip-load force coordination in cerebellar patients. Exp Brain Res [Internet]. 1999;128(1–2):76–80. http://link.springer.com/10.1007/s002210050820.

  197. Hay JC, Pick HL. Gaze-contingent prism adaptation: Optical and motor factors. J Exp Psychol [Internet]. 1966;72(5):640–8. https://doi.org/10.1037/h0023737.

  198. SHELHAMER M, ROBINSON DA. TAN HS. Context-Specific Gain Switching in the Human Vestibuloocular Reflex a. Ann N Y Acad Sci [Internet]. 1992;656(1):889–91. https://nyaspubs.onlinelibrary.wiley.com/doi/https://doi.org/10.1111/j.1749-6632.1992.tb25285.x.

  199. Baker JF, Perlmutter SI, Peterson BW, Rude SA, Robinson FR. Simultaneous opposing adaptive changes in cat vestibulo-ocular reflex direction for two body orientations. Exp Brain Res [Internet]. 1987;69(1). http://link.springer.com/https://doi.org/10.1007/BF00247045.

  200. Gandolfo F, Mussa-Ivaldi FA, Bizzi E. Motor learning by field approximation. Proc Natl Acad Sci [Internet]. 1996;93(9):3843–6. https://doi.org/10.1073/pnas.93.9.3843.

  201. Kravitz JH, Yaffe F. Conditioned adaptation to prismatic displacement with a tone as the conditional stimulus. Percept Psychophys [Internet]. 1972;12(3):305–8. http://link.springer.com/https://doi.org/10.3758/BF03207210.

  202. Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT. Throwing while looking through prisms: II. Specificity and storage of multiple gaze–throw calibrations. Brain [Internet]. 1996;119(4):1199–211. https://academic.oup.com/brain/article-lookup/doi/https://doi.org/10.1093/brain/119.4.1199.

  203. Brashers-Krug T, Shadmehr R, Bizzi E. Consolidation in human motor memory. Nature [Internet]. 1996;382(6588):252–5. https://www.nature.com/articles/382252a0.

  204. Shadmehr R, Brashers-Krug T. Functional Stages in the Formation of Human Long-Term Motor Memory. J Neurosci [Internet]. 1997;17(1):409–19. https://www.jneurosci.org/lookup/doi/https://doi.org/10.1523/JNEUROSCI.17-01-00409.1997.

  205. MCGONIGLE BO, FLOOK J. Long-term retention of single and multistate prismatic adaptation by humans. Nature [Internet]. 1978;272(5651):364–6. https://www.nature.com/articles/272364a0.

  206. Welch RB, Bridgeman B, Anand S, Browman KE. Alternating prism exposure causes dual adaptation and generalization to a novel displacement. Percept Psychophys [Internet]. 1993;54(2):195–204. http://link.springer.com/https://doi.org/10.3758/BF03211756.

  207. Shadmehr R, Mussa-Ivaldi F. Adaptive representation of dynamics during learning of a motor task. J Neurosci [Internet]. 1994;14(5):3208–24. https://www.jneurosci.org/lookup/doi/https://doi.org/10.1523/JNEUROSCI.14-05-03208.1994.

  208. Ghahramani Z, Wolpert DM. Modular decomposition in visuomotor learning. Nature [Internet]. 1997;386(6623):392–5. https://www.nature.com/articles/386392a0.

  209. Flanagan JR, Nakano E, Imamizu H, Osu R, Yoshioka T, Kawato M. Composition and decomposition of internal models in motor learning under altered kinematic and dynamic environments. J Neurosci. 1999;19(20):1–5.

    Article  Google Scholar 

  210. Jacobs RA, Jordan MI, Nowlan SJ, Hinton GE. Adaptive Mixtures of Local Experts. Neural Comput [Internet]. 1991;3(1):79–87. https://direct.mit.edu/neco/article/3/1/79-87/5560.

  211. Kawato M. Internal models for motor control and trajectory planning. Curr Opin Neurobiol. 1999;9(6):718–27.

    Article  CAS  PubMed  Google Scholar 

  212. Pollick FE, Sapiro G. Constant affine velocity predicts the 1/3 power law of planar motion perception and generation. Vis Res. 1997;37(3):347–53.

    Article  CAS  PubMed  Google Scholar 

  213. Flash T, Meirovitch Y, Barliya A. Models of human movement: Trajectory planning and inverse kinematics studies. Rob Auton Syst [Internet]. 2013;61(4):330–9. https://linkinghub.elsevier.com/retrieve/pii/S0921889012001741.

  214. Meirovitch Y, Bennequin D, Flash T. Geometrical Invariance and Smoothness Maximization for Task-Space Movement Generation. IEEE Trans Robot [Internet]. 2016;32(4):837–53. http://ieeexplore.ieee.org/document/7519106/.

  215. Flash T, Karklinsky M, Fuchs R, Berthoz A, Bennequin D, Meirovitch Y. Motor Compositionality and Timing: Combined Geometrical and Optimization Approaches. In. 2019. pp. 155–84. http://link.springer.com/https://doi.org/10.1007/978-3-319-93870-7_8.

  216. Grimaldi G. Cerebellar Motor Disorders. In: Handbook of the Cerebellum and Cerebellar Disorders [Internet]. Dordrecht: Springer Netherlands; 2013. pp. 1595–625. http://link.springer.com/https://doi.org/10.1007/978-94-007-1333-8_71.

  217. Manto M, Manto M-U. MP. The cerebellum and its disorders. In: Cambridge University Press; 2002. pp. 97–120.

  218. Donna L, Gruol D, Schmahmann YS. Essentials of Cerebellum and Cerebellar Disorders [Internet]. Gruol DL, Koibuchi N, Manto M, Molinari M, Schmahmann JD, Shen Y, editors. Cham: Springer International Publishing; 2016. 397–402 p. http://link.springer.com/https://doi.org/10.1007/978-3-319-24551-5.

  219. Iglói K, Doeller CF, Paradis A-L, Benchenane K, Berthoz A, Burgess N et al. Interaction Between Hippocampus and Cerebellum Crus I in Sequence-Based but not Place-Based Navigation. Cereb Cortex [Internet]. 2015;25(11):4146–54. https://academic.oup.com/cercor/article-lookup/doi/https://doi.org/10.1093/cercor/bhu132.

  220. Babayan BM, Watilliaux A, Viejo G, Paradis A-L, Girard B, Rondi-Reig L. A hippocampo-cerebellar centred network for the learning and execution of sequence-based navigation. Sci Rep [Internet]. 2017;7(1):17812. https://www.nature.com/articles/s41598-017-18004-7.

  221. Bostan AC, Dum RP, Strick PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci [Internet]. 2013;17(5):241–54. https://linkinghub.elsevier.com/retrieve/pii/S136466131300065X.

  222. Sokolov AA, Gharabaghi A, Tatagiba MS, Pavlova M. Cerebellar Engagement in an Action Observation Network. Cereb Cortex [Internet]. 2010;20(2):486–91. https://academic.oup.com/cercor/article-lookup/doi/https://doi.org/10.1093/cercor/bhp117.

  223. Sokolov AA, Erb M, Gharabaghi A, Grodd W, Tatagiba MS, Pavlova MA. Biological motion processing: The left cerebellum communicates with the right superior temporal sulcus. Neuroimage [Internet]. 2012;59(3):2824–30. https://linkinghub.elsevier.com/retrieve/pii/S1053811911009384.

  224. Mayne R. A Systems Concept of the Vestibular Organs. In. 1974. pp. 493–580. http://link.springer.com/https://doi.org/10.1007/978-3-642-65920-1_14.

  225. Merfeld DM, Zupan L, Peterka RJ. Humans use internal models to estimate gravity and linear acceleration. Nature [Internet]. 1999;398(6728):615–8. https://www.nature.com/articles/19303.

  226. Laurens J, Droulez J. Bayesian processing of vestibular information. Biol Cybern [Internet]. 2007;96(4):389–404. http://link.springer.com/https://doi.org/10.1007/s00422-006-0133-1.

  227. Laurens J, Angelaki DE. The functional significance of velocity storage and its dependence on gravity. Exp Brain Res [Internet]. 2011;210(3–4):407–22. http://link.springer.com/https://doi.org/10.1007/s00221-011-2568-4.

  228. Spelke ES, Breinlinger K, Macomber J, Jacobson K. Origins of knowledge. Psychol Rev [Internet]. 1992;99(4):605–32. http://doi.apa.org/getdoi.cfm?doi=10.1037/0033-295X.99.4.605.

  229. Flash T, Hogan N. The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci. 1985;5(7):1688–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Eya Torkhani Langlois and Giovanni wrote the first part of the article, Daniel Bennequin wrote the mathematical section of the paper. All authors reviewed the manuscript.

Corresponding author

Correspondence to Giovanni de Marco.

Ethics declarations

Ethical Approval

Ethics approval was not required for this study.

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

“Definitions”: a group, noted G for instance, is a collection of entities, that we think of as transformations of something, not necessarily well determined. This collection contains a privileged element, say e, named the neutral element, or the identity of G; and G is equipped with an operation, named its law of composition, or its product, which associates an element to every pair of elements of G, satisfying three axioms: associativity, neutrality of e, and existence of the inverse. These axioms express the usual properties of displacements of objects in space: the succession of two compositions is well defined, without memory of the intermediate step, the identity, being the immobility, when nothing changes, has no effect in composition, and finally, that every motion can be reversed to come back at the original state.

The spatial rigid displacements form the main example of the concept of a group. Another important example is given by the group of permutations of a set of objects: it describes all the manners to exchange the elements of this set between themselves; the product law being the composition of successive permutations; the neutral element being the identity; the inverse of a permutation consisting of replacing things in the former order.

A subgroup H of G is a subset (i.e. a part of G), containing e, which is preserved by-products and inversions.

For instance, if the objects are colored, we can consider the subgroup of permutations that preserve the color.

In general, we define an action (or representation) of G on a set X, as an operation by permutations. More precisely, this is an action to the left, expressed by: (g, x) gives g.x.

The group GA(E) of all the affine transformations of the Euclidian space E, or the Euclidian plane, contains the displacements, but it is strictly richer, it is made by all permutations of E, which sends parallel lines to parallel lines, for instance all dilatation, stretching, squeezing are affine transformations.

For computation, it is practical here to use linear algebra, because every affine transformation can be written as the composition of a translation with a linear map, representable by a matrix.

Generally, the affine transformations do not respect the distance, or the volume. The subgroup that preserves the volume is named equi-affine.

In 3D space, the number of dimensions (degrees of liberty) of displacements is $6$, but for affine transformations, it is 12. For the equi-affine group, we get 11.

Larger than GA(E), we can consider the 3D projective group PGL(P), acting on the projective space P, which is obtained from the affine space E by adding a set of points at infinity. Projective transformations depend on 15 dimensions.

Much larger is the diffeomorphism group, which preserves the continuity and differential regularity of figures; it has an infinite number of dimensions. Without differentials, we get the homeomorphism group.

When we restrict ourselves to the Euclidean plane, of dimension two, the Euclide group of displacements has dimension 3, the equi-affine group dimension 5, and the full affine group dimension 6. More generally, Felix Klein suggested that Geometry is associated with a group G and a subgroup H, in such a manner that the points of the space that G transforms (i.e. permutes) are the subsets (i.e. parts) of G of the special form xH, obtained by applying element x to any element of H, when x describes all G; two elements x, y of G are said equivalent modulo H when xH coincides with yH. The set of equivalence classes is denoted by G/H and named a Klein model of space.

However, observe that if we adopt this definition, a specially marked point appears in the space, which is H itself. A manner to “forget about this point” as in usual geometry, is to consider an action of G on a set X, having two properties: given any pair of points x, y, there exists at least one transformation sending x to y. In some sense this consists in looking at the points through the subgroups that stabilize them, for instance in the Euclidian case, points are replaced conceptually by the rotations around them. The model of space X is called a homogeneous space.

For all the above examples of groups, there exist natural families of sub-groups that define convenient geometries, which are useful for Mathematics, Physics, and Biology.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langlois, E.T., Bennequin, D. & de Marco, G. Role of the Cerebellum in the Construction of Functional and Geometrical Spaces. Cerebellum (2024). https://doi.org/10.1007/s12311-024-01693-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12311-024-01693-y

Keywords

Navigation