Skip to main content
Log in

Pontine nuclei-mediated cerebello-cerebral interactions and its functional role

  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The pontine nuclei relay information derived from the cerebral cortex to the cerebellum. In addition to the motor command signals generated in the motor cortex, the cerebellum may generate motor command signals independent of the cerebral cortex using pontine nuclei-mediated signals. The cerebellar motor command signals generated in the vermis-medial cerebellar nuclear system may directly drive peripheral motoneurons in simple and autonomic movements. Those generated in the hemispherelateral cerebellar nuclear system, which are used in complicated movements, may not only drive the premotor or motor nuclei but may also be fed back to the cerebellum through the parvocellular red nucleus-inferior olive pathway, and may be compared with the motor command signals generated in the cerebral cortex. The long-term depression of parallel fiber-Purkinje cell synapses may be utilized in optimizing these cerebellar motor command signals. Voluntary movements may be executed through cooperation of the cerebellum- and cerebrum-generated motor command signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen GI, Tsukahara N. Cerebrocerebellar communication systems. Physiol Rev 1974; 54: 957–1043.

    PubMed  CAS  Google Scholar 

  2. Ito M. The Cerebellum and Neural Control. New York: Raven Press, 1984.

    Google Scholar 

  3. Ito M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 2001; 81: 1143–1195.

    PubMed  CAS  Google Scholar 

  4. Wiesendanger R, Wiesendanger M, Ruegg. An anatomical investigation of the corticopontine projection in the primate (Macaca fascicularis and Saimiri sciureus). II. The projection from frontal and associational areas. Neuroscience 1979; 4: 747–765.

    Article  PubMed  CAS  Google Scholar 

  5. Shinoda Y, Izawa Y, Sugiuchi Y, Futami T. Functional significance of excitatory projections from the precerebellar nuclei to interpositus and dentate neurons for mediating motor, premotor and parietal cortical inputs. In: DeZeeuw CI, Strata P, Voogd J, editors. Progress in Brain Research. Amsterdam: Elsevier, 1997; 114: 193–207.

    Google Scholar 

  6. Chan-Palay. Cerebellar Dentate Nucleus. Berlin: Springer, 1977: 123–126.

    Google Scholar 

  7. Keller EL, Heinen SJ. Generation of smooth-pursuit eye movements: neuronal mechanisms and pathways. Neurosci Res 1991; 11: 79–107.

    Article  PubMed  CAS  Google Scholar 

  8. Takagi M, Zee DS, Tamargo RJ. Effects of lesions of the oculomotor cerebellar vermis on eye movements in primate: smooth pursuit. J Neurophysiol 2000; 83: 2047–2062.

    PubMed  CAS  Google Scholar 

  9. Glickstein M, Gerrits N, Kralj-Hans I, Mercier B, Stein J, Voogd J. Visual pontocerebellar projections in the macaque. J Comp Neurol 1994; 349: 51–72.

    Article  PubMed  CAS  Google Scholar 

  10. Xiong G, Nagao S. The lobulus petrosus of monkey paraflocculus relays visual inputs to the cerebellar nuclear complex, an anterograde and retrograde tracing study. Exp Brain Res 2002; 247: 252–263.

    Article  Google Scholar 

  11. Hiramatsu T, Ohki M, Xiong G, Takeda T, Nagao S. Effects of chemical lesions of primate lobulus petrosus of paraflocculus on the dynamic characteristics and adaptability of smooth pursuit. Soc Neurosci Abstr 2002; 28: 766.6.

    Google Scholar 

  12. Suzuki DA, May JG, Keller EL, Yee RD. Visual motion response properties of neurons in the dorsolateral pontine nucleus of alert monkey. J Neurophysiol 1990; 63: 37–59.

    PubMed  CAS  Google Scholar 

  13. Shidara M, Kawano K. Role of Purkinje cells in the ventral paraflocculus in short-latency ocular following responses. Exp Brain Res 1993; 93: 185–195.

    Article  PubMed  CAS  Google Scholar 

  14. Noda H, Mikami A. Discharges of neurons in the dorsal paraflocculus of monkeys during eye movements and visual stimulation. J Neurophysiol 1986; 56: 1129–1146.

    PubMed  CAS  Google Scholar 

  15. Middleton FA, Strick PL. Cerebellar output: motor and cognitive channels. Trends Cog Sci 1998; 2: 348–354.

    Article  Google Scholar 

  16. Xiong G, Hiramatsu T, Nagao S. Corticopontocerebellar pathway from the prearcuate region to hemispheric lobule VII of the cerebellum: an anterograde and retrograde tracing study in the monkey. Neurosci Lett 2002; 322: 173–176.

    Article  PubMed  CAS  Google Scholar 

  17. Thach W, Goodlin HP, Keating JG. The cerebellum and the adaptive coordination of movement. Ann Rev Neurosci 1992; 15: 403–442.

    Article  PubMed  CAS  Google Scholar 

  18. Thach WT. What is the role of the cerebellum in motor learning and cognition? Trends Cog Sci 1998; 2: 331–337.

    Article  Google Scholar 

  19. Ito M. Long-term depression. Ann Rev Neurosci 1989; 12: 85–102.

    Article  PubMed  CAS  Google Scholar 

  20. Ito M. Cerebellar learning in the vestibule-ocular reflex. Trends Cog Sci 1998; 2: 313–317.

    Article  Google Scholar 

  21. Nagao S, Kitazawa H. Adaptive modifications of the post-saccadic pursuit eye movements and its interactions with saccade and vestibulo-ocular reflex in the primate. Neurosci Res 1998; 32: 157–169.

    Article  PubMed  CAS  Google Scholar 

  22. Fujita M, Amagai A, Minakawa F, Aoki M. Selective and delay adaptation of human saccades. Cognitive Brain Res 2002; 13: 41–52.

    Article  Google Scholar 

  23. Nagao S, Kitazawa H. Subdural applications of NO-scavenger or NO-blocker to the cerebellum depress the adaptation of monkey post-saccadic smooth pursuit eye movements. Neuro Report 2000; 17: 131–133.

    Google Scholar 

  24. Robinson FR, Fuchs AF, Noto CT. Role of the cerebellar caudal fastigial nucleus in saccade adaptation in monkeys. Soc Neurosci Abstr 2000; 26: 293.

    Google Scholar 

  25. Kurata K, Hoshi E. Reacquisition deficits in prism adaptation after muscimol microinjection into the ventral premotor cortex of monkeys. J Neuropysiol 1999; 81: 1927–1938.

    CAS  Google Scholar 

  26. Imamizu H, Miyauchi S, Tamada S, Sasaki Y, Takino R, Putz B, Yoshioka T, Kawato M. Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 2000; 403: 192–195.

    Article  PubMed  CAS  Google Scholar 

  27. Stone LS, Lisberger SG. Visual responses of Purkinje cells in the cerebellar flocculus during smooth pursuit eye movements in monkeys. II. Complex spikes. J Neurophysiol 1990; 63: 1262–1275.

    PubMed  CAS  Google Scholar 

  28. Kitazawa S, Kimura T, Yin P-B. Cerebellar complex spikes encode both destinations and errors in arm movements. Nature 1998; 392: 494–497.

    Article  PubMed  CAS  Google Scholar 

  29. Toyama K, Tsukahara N, Kosaka K, Matsunami K. Synaptic excitation of the red nucleus neurons by fibres from interpositus nucleus. Exp Brain Res 1970; 11: 187–198.

    Article  PubMed  CAS  Google Scholar 

  30. Tsukahara N, Fuller DRG. Conductance changes during pyramidally induced postsynaptic potentials in red nucleus neurons. J Neurophysiol 1969; 32: 35–42.

    PubMed  CAS  Google Scholar 

  31. Katsumaru K, Murakami F, Wu J, Tsukahara N. GABAergic intrinsic interneurons in cat red nucleus demonstrated with combined immunocytochemistry and anterograde degeneration method. Neurosci Res 1984; 1: 35–44.

    Article  PubMed  CAS  Google Scholar 

  32. Raichle ME, Fiez JA, Videen TO, MacLeod AM, Pardo JV, Fox PT, Petersen SE. Practice-related changes in human functional anatomy during nonmotor learning. Cerebral Cortex 1995; 4: 8–26.

    Article  Google Scholar 

  33. Leiner HC, Leiner AL, Dow RS. Cognitive and language functions of the human cerebellum. Trends in Neurosci 1993; 16: 444–447.

    Article  CAS  Google Scholar 

  34. Petersen SE, Fox PT, Posner MI, Minton M, Raichle ME. Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 1988; 331: 585–589.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soichi Nagao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagao, S. Pontine nuclei-mediated cerebello-cerebral interactions and its functional role. Cerebellum 3, 11–15 (2004). https://doi.org/10.1080/14734220310012181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220310012181

Keywords

Navigation