Skip to main content

Advertisement

Log in

Coexistence of regulatory B cells and regulatory T cells in tumor-infiltrating lymphocyte aggregates is a prognostic factor in patients with breast cancer

  • Original Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Background

Tumors can acquire tolerance to tumor immunity and develop enhanced proliferation. Regulatory B cells (Bregs), whose role in immune tolerance is similar to that of regulatory T cells (Tregs), appear to be involved in tumor immunity. Recently, Bregs were found to induce Tregs against tumor immunity. However, the platform for the coexistence of Bregs and Tregs in cancer patients and its clinical significance remain unclear; thus, they were evaluated in breast cancer patients.

Methods

In 489 breast cancer patients, CD25- and IL10-positive Bregs and Foxp3-positive Tregs were immunohistochemically evaluated in tumor-infiltrating lymphocyte aggregates (TIL aggregates) that consisted of CD19-positive B-cell follicles and CD3-positive T-cell parafollicles. Then the correlations of the localization and existence of these cells with metastasis-free survival (MFS) were evaluated in breast cancer patients.

Results

TIL aggregates were observed in marginal regions of tumors in breast cancer patients. In the TIL aggregates, the existence of Bregs was closely related to that of Tregs (p < 0.0001). On multivariate analysis, the coexistence of Bregs and Tregs in TIL aggregates was correlated with MFS in breast cancer patients (p = 0.007). Furthermore, MFS was significantly shorter for patients with the coexistence of Tregs and Bregs in TIL aggregates than in those with Tregs alone without Bregs (p = 0.0475).

Conclusions

The present results suggest that Bregs are related to the induction of Tregs in TIL aggregates and the development of metastasis of breast cancer cells. Bregs are expected to be a new diagnostic and therapeutic target in breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Disis ML. Immune regulation of cancer. J Clin Oncol. 2010;28:4531–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Swann JB, Smyth MJ. Immune surveillance of tumors. J Clin Investig. 2007;117:1137–46.

    Article  PubMed  CAS  Google Scholar 

  3. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–8.

    Article  PubMed  CAS  Google Scholar 

  4. West NR, Kost SE, Martin SD, Milne K, Deleeuw RJ, Nelson BH, et al. Tumour-infiltrating FOXP3(+) lymphocytes are associated with cytotoxic immune responses and good clinical outcome in oestrogen receptor-negative breast cancer. Br J Cancer. 2013;108:155–62.

    Article  PubMed  CAS  Google Scholar 

  5. Denkert C, Loibl S, Noske A, Roller M, Muller BM, Komor M, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol. 2010;28:105–13.

    Article  PubMed  CAS  Google Scholar 

  6. Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol. 2013;31:860–7.

    Article  PubMed  CAS  Google Scholar 

  7. Savas P, Salgado R, Denkert C, Sotiriou C, Darcy PK, Smyth MJ, et al. Clinical relevance of host immunity in breast cancer: from TILs to the clinic. Nat Rev Clin Oncol. 2016;13:228–41.

    Article  PubMed  CAS  Google Scholar 

  8. Facciabene A, Motz GT, Coukos G. T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res. 2012;72:2162–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Whiteside TL, Schuler P, Schilling B. Induced and natural regulatory T cells in human cancer. Expert Opin Biol Ther. 2012;12:1383–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Nishikawa H, Sakaguchi S. Regulatory T cells in tumor immunity. Int J Cancer. 2010;127:759–67.

    PubMed  CAS  Google Scholar 

  11. Jacobs JF, Nierkens S, Figdor CG, de Vries IJ, Adema GJ. Regulatory T cells in melanoma: the final hurdle towards effective immunotherapy? Lancet Oncol. 2012;13:e32–42.

    Article  PubMed  CAS  Google Scholar 

  12. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10:942–9.

    Article  PubMed  CAS  Google Scholar 

  13. Nakamura R, Sakakibara M, Nagashima T, Sangai T, Arai M, Fujimori T, et al. Accumulation of regulatory T cells in sentinel lymph nodes is a prognostic predictor in patients with node-negative breast cancer. Eur J Cancer. 2009;45:2123–31.

    Article  PubMed  CAS  Google Scholar 

  14. Mauri C, Bosma A. Immune regulatory function of B cells. Annu Rev Immunol. 2012;30:221–41.

    Article  PubMed  CAS  Google Scholar 

  15. Rosser EC, Mauri C. Regulatory. B cells: origin, phenotype, and function. Immunity. 2015;42:607–12.

    Article  PubMed  CAS  Google Scholar 

  16. DiLillo DJ, Matsushita T, Tedder TF. B10 cells and regulatory B cells balance immune responses during inflammation, autoimmunity, and cancer. Ann N Y Acad Sci. 2010;1183:38–57.

    Article  PubMed  CAS  Google Scholar 

  17. Mauri C. Regulation of immunity and autoimmunity by B cells. Curr Opin Immunol. 2010;22:761–7.

    Article  PubMed  CAS  Google Scholar 

  18. Wolf SD, Dittel BN, Hardardottir F, Janeway CA. Jr. Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J Exp Med. 1996;184:2271–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM. B cells regulate autoimmunity by provision of IL-10. Nat Immunol. 2002;3:944–50.

    Article  PubMed  CAS  Google Scholar 

  20. Matsumoto M, Baba A, Yokota T, Nishikawa H, Ohkawa Y, Kayama H, et al. Interleukin-10-producing plasmablasts exert regulatory function in autoimmune inflammation. Immunity. 2014;41:1040–51.

    Article  PubMed  CAS  Google Scholar 

  21. Shen P, Roch T, Lampropoulou V, O’Connor RA, Stervbo U, Hilgenberg E, et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature. 2014;507:366–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Wang RX, Yu CR, Dambuza IM, Mahdi RM, Dolinska MB, Sergeev YV, et al. Interleukin-35 induces regulatory B cells that suppress autoimmune disease. Nat Med. 2014;20:633–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Horikawa M, Minard-Colin V, Matsushita T, Tedder TF. Regulatory B cell production of IL-10 inhibits lymphoma depletion during CD20 immunotherapy in mice. J Clin Investig. 2011;121:4268–80.

    Article  PubMed  CAS  Google Scholar 

  24. Li Y, An J, Huang S, He J, Zhang J. Esophageal cancer-derived microvesicles induce regulatory B cells. Cell Biochem Funct. 2015;33:308–13.

    Article  PubMed  CAS  Google Scholar 

  25. Zhou J, Min Z, Zhang D, Wang W, Marincola F, Wang X. Enhanced frequency and potential mechanism of B regulatory cells in patients with lung cancer. J Transl Med. 2014;12:304.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Wei X, Jin Y, Tian Y, Zhang H, Wu J, Lu W, et al. Regulatory B cells contribute to the impaired antitumor immunity in ovarian cancer patients. Tumour Biol. 2016;37:6581–8.

    Article  PubMed  CAS  Google Scholar 

  27. Qian L, Bian GR, Zhou Y, Wang Y, Hu J, Liu X, et al. Clinical significance of regulatory B cells in the peripheral blood of patients with oesophageal cancer. Cent Eur J Immunol. 2015;40: 263–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. DiLillo DJ, Weinberg JB, Yoshizaki A, Horikawa M, Bryant JM, Iwata Y, et al. Chronic lymphocytic leukemia and regulatory B cells share IL-10 competence and immunosuppressive function. Leukemia. 2013;27:170–82.

    Article  PubMed  CAS  Google Scholar 

  29. Shao Y, Lo CM, Ling CC, Liu XB, Ng KT, Chu AC, et al. Regulatory B cells accelerate hepatocellular carcinoma progression via CD40/CD154 signaling pathway. Cancer Lett. 2014;355:264–72.

    Article  PubMed  CAS  Google Scholar 

  30. Wang WW, Yuan XL, Chen H, Xie GH, Ma YH, Zheng YX, et al. CD19+CD24hiCD38hiBregs involved in downregulate helper T cells and upregulate regulatory T cells in gastric cancer. Oncotarget. 2015;6:33486–99.

    PubMed  PubMed Central  Google Scholar 

  31. Shimabukuro-Vornhagen A, Schlosser HA, Gryschok L, Malcher J, Wennhold K, Garcia-Marquez M, et al. Characterization of tumor-associated B-cell subsets in patients with colorectal cancer. Oncotarget. 2014;5:4651–64.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhou X, Su YX, Lao XM, Liang YJ, Liao GQ. CD19(+)IL-10(+) regulatory B cells affect survival of tongue squamous cell carcinoma patients and induce resting CD4(+) T cells to CD4(+)Foxp3(+) regulatory T cells. Oral Oncol. 2016;53:27–35.

    Article  PubMed  CAS  Google Scholar 

  33. Schioppa T, Moore R, Thompson RG, Rosser EC, Kulbe H, Nedospasov S, et al. B regulatory cells and the tumor-promoting actions of TNF-alpha during squamous carcinogenesis. Proc Natl Acad Sci USA. 2011;108:10662–7.

    Article  PubMed  CAS  Google Scholar 

  34. Beguinot M, Dauplat MM, Kwiatkowski F, Lebouedec G, Tixier L, Pomel C, et al. Analysis of tumour-infiltrating lymphocytes reveals two new biologically different subgroups of breast ductal carcinoma in situ. BMC Cancer. 2018;18:129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Campbell MJ, Baehner F, O’Meara T, Ojukwu E, Han B, Mukhtar R, et al. Characterizing the immune microenvironment in high-risk ductal carcinoma in situ of the breast. Breast Cancer Res Treat. 2017;161:17–28.

    Article  PubMed  CAS  Google Scholar 

  36. Thompson E, Taube JM, Elwood H, Sharma R, Meeker A, Warzecha HN, et al. The immune microenvironment of breast ductal carcinoma in situ. Mod Pathol. 2016;29:249–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Abba MC, Gong T, Lu Y, Lee J, Zhong Y, Lacunza E, et al. A molecular portrait of high-grade ductal carcinoma in situ. Cancer Res. 2015;75:3980–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Olkhanud PB, Damdinsuren B, Bodogai M, Gress RE, Sen R, Wejksza K, et al. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4(+) T cells to T-regulatory cells. Cancer Res. 2011;71:3505–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Menetrier-Caux C, Gobert M, Caux C. Differences in tumor regulatory T-cell localization and activation status impact patient outcome. Cancer Res. 2009;69:7895–8.

    Article  PubMed  CAS  Google Scholar 

  40. Kim S, Lee A, Lim W, Park S, Cho MS, Koo H, et al. Zonal difference and prognostic significance of foxp3 regulatory T cell infiltration in breast cancer. J Breast Cancer. 2014;17:8–17.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the patients, nurses, and physicians at Chiba University Hospital. This work was greatly assisted by the excellent technical help and advice of Hiroko Kawamura.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Sakakibara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishigami, E., Sakakibara, M., Sakakibara, J. et al. Coexistence of regulatory B cells and regulatory T cells in tumor-infiltrating lymphocyte aggregates is a prognostic factor in patients with breast cancer. Breast Cancer 26, 180–189 (2019). https://doi.org/10.1007/s12282-018-0910-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-018-0910-4

Keywords

Navigation