Skip to main content

Advertisement

Log in

Functional heterogeneity of circulating T regulatory cell subsets in breast cancer patients

  • Original Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Background

Regulatory T cells (Tregs) play a major role in tumor escape from immunosurveillance by suppressing effector cells. The number of Tregs is increased in tumor sites and peripheral blood of breast cancer patients. However, the data regarding phenotypic and functional heterogeneity of Treg subpopulations in breast cancer are limited. The present study aimed to investigate the number and suppressive potential of Tregs that possess natural naïve-(N nTregs), effector/memory-like (EM nTregs), and Tr1-like phenotypes in breast cancer patients and healthy women.

Methods

The study included 10 HW and 17 primary breast cancer patients. Numbers of CD4+CD25+FoxP3+CD45RA+ N nTregs, CD4+CD25+FoxP3+CD45RA EM nTregs, and CD4+IL-4IL-10+ Tr1 subsets and the expression of CTLA-4, CD39, GITR, LAP, and IL-35 by these Treg subsets were measured in freshly obtained peripheral blood by flow cytometry.

Results

Herein, we demonstrate that the percentages of N nTregs, EM nTregs, CD25+ and FoxP3+ Tr1 cells are elevated in the peripheral blood of breast cancer patients, but do not correlate with cancer stages. Nevertheless, the frequency of CD25+ Tr1 cells was associated with nodal involvement, while the number of EM nTregs correlated with clinical outcome. The expression of CTLA-4 and IL-35 by all assessed Treg subsets was increased throughout all tumor stages (I–III).

Conclusions

Collectively, the current study shows phenotypic alterations in suppressive receptors of Treg subsets, suggesting that breast cancer patients have increased activity of N nTregs, EM nTregs and Tr1 cells; and EM nTregs and CD25+ Tr1 cells represent prospective markers for assessing disease prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CTLA-4:

Cytotoxic T-lymphocyte antigen-4

EM nTregs:

CD4+CD25+FoxP3+CD45RA effector/memory-like T regulatory cells;

GITR:

Glucocorticoid-induced tumor necrosis factor receptor

iTregs:

Adaptive/induced T regulatory cells

LAP:

Latency associated peptide

nTregs:

Natural T regulatory cells

N nTregs:

CD4+CD25+FoxP3+CD45RA+ naïve-like T regulatory cells

TIL:

Tumor-infiltrating lymphocytes

TNM:

Tumor/node/metastasis classification and staging system

Tr1:

Type 1 T regulatory cells

Tregs:

T regulatory cells

References

  1. Stewart BW, Wild CP. World cancer report 2014. World Health Organ 2014:1–2

  2. Zou W. Regulatory T, cells, tumour immunity and immunotherapy. Nat Rev Immunol. 2006;6(4):295–307. https://doi.org/10.1038/nri1806.

    Article  CAS  PubMed  Google Scholar 

  3. Shevach EM. Mechanisms of Foxp3+ T regulatory cell-mediated suppression. Immunity. 2009;30(5):636–45. https://doi.org/10.1016/j.immuni.2009.04.010.

    Article  CAS  PubMed  Google Scholar 

  4. Adeegbe DO, Nishikawa H. Natural and induced T regulatory cells in cancer. Front Immunol. 2013;4:190. https://doi.org/10.3389/fimmu.2013.00190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Roncarolo MG, Bacchetta R, Bordignon C, Narula S, Levings MK. Type 1 T regulatory cells. Immunol Rev. 2001;182:68–79. https://doi.org/10.1034/j.1600-065X.2001.1820105.x.

    Article  CAS  PubMed  Google Scholar 

  6. Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009;30(6):899–911. https://doi.org/10.1016/j.immuni.2009.03.019.

    Article  CAS  PubMed  Google Scholar 

  7. Booth NJ, McQuaid AJ, Sobande T, Kissane S, Agius E, Jackson SE, et al. Different proliferative potential and migratory characteristics of human CD4+ regulatory T cells that express either CD45RA or CD45RO. J Immunol. 2010;184(8):4317–26. https://doi.org/10.4049/jimmunol.0903781.

    Article  CAS  PubMed  Google Scholar 

  8. Watanabe MA, Oda JM, Amarante MK, Cesar Voltarelli J. Regulatory T cells and breast cancer: implications for immunopathogenesis. Cancer Metastasis Rev. 2010;29(4):569–79. https://doi.org/10.1007/s10555-010-9247-y.

    Article  CAS  PubMed  Google Scholar 

  9. Shimizu J, Yamazaki S, Sakaguchi S. Induction of tumor immunity by removing CD25+ CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol. 1999;163:5211–8.

    CAS  PubMed  Google Scholar 

  10. Ladoire S, Arnould L, Apetoh L, Coudert B, Martin F, Chauffert B, et al. Pathologic complete response to neoadjuvant chemotherapy of breast carcinoma is associated with the disappearance of tumor-infiltrating FoxP3+ regulatory T cells. Clin Cancer Res. 2008;14(8):2413–20. https://doi.org/10.1158/1078-0432.CCR-07-4491.

    Article  CAS  PubMed  Google Scholar 

  11. Zhou Y, Shao N, Aierken N, Xie C, Ye R, Qian X, et al. Prognostic value of tumor-infiltrating Foxp3+ regulatory T cells in patients with breast cancer: a meta-analysis. J Cancer. 2017;8:4098–105. https://doi.org/10.7150/jca.21030.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gol-Ara M, Jadidi-Niaragh F, Sadria R, Azizi G, Mirshafiey A. The role of different subsets of regulatory T cells in immunopathogenesis of rheumatoid arthritis. Arthritis. 2012;2012:805875. https://doi.org/10.1155/2012/805875.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kotsakis A, Koinis F, Katsarou A, Gioulbasani M, Aggouraki D, Kentepozidis N, et al. Prognostic value of circulating regulatory T cell subsets in untreated non-small cell lung cancer patients. Sci Rep. 2016;6:39247. https://doi.org/10.1038/srep39247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B. Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res. 2003;9(2):606–12. https://doi.org/10.1158/1078-0432.ccr-05-1244.

    Article  PubMed  Google Scholar 

  15. Chaudhary B, Elkord E. Regulatory T cells in the tumor microenvironment and cancer progression: role and therapeutic targeting. Vaccines (Basel). 2016;4(3):28. https://doi.org/10.3390/vaccines4030028.

    Article  CAS  Google Scholar 

  16. Beyer M, Classen S, Endl E, Kochanek M, Weihrauch MR, Debey-Pascher S, et al. Comparative approach to define increased regulatory T cells in different cancer subtypes by combined assessment of CD127 and FoxP3. Clin Dev Immunol. 2011;2011:734036. https://doi.org/10.1155/2011/734036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abo-Elenein A, Elgohary SE, Hashish A, El-Halaby E. Significance of immunoregulatory T cells in different stages of breast cancer. Egypt J Immunol. 2008;15(2):145–52.

    PubMed  Google Scholar 

  18. Liyanage UK, Moore TT, Joo H, Tanaka Y, Herrmann V, Doherty G, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol. 2002;169:2756–61. https://doi.org/10.4049/jimmunol.169.5.2756.

    Article  CAS  PubMed  Google Scholar 

  19. Tran DQ, Andersson J, Hardwick D, Bebris L, Illei GG, Shevach EM. Selective expression of latency-associated peptide (LAP) and IL-1 receptor type I/II (CD121a/CD121b) on activated human FOXP3+ regulatory T cells allows for their purification from expansion cultures. Blood. 2009;113(21):5125–33. https://doi.org/10.1182/blood-2009-01-199950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Collison LW, Chaturvedi V, Henderson AL, Giacomin PR, Guy C, Bankoti J, et al. Interleukin-35-mediated induction of a novel regulatory T cell population. Nat Immunol. 2010;11(12):1093–101. https://doi.org/10.1038/ni.1952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mahalingam J, Lin C-Y, Chiang J-M, Su PJ, Chu YY, Lai HY, et al. CD4+ T cells expressing latency-associated peptide and Foxp3 are an activated subgroup of regulatory T cells enriched in patients with colorectal cancer. PLoS One. 2014;9(9):e108554. https://doi.org/10.1371/journal.pone.0108554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schuler PJ, Schilling B, Harasymczuk M, Hoffmann TK, Johnson J, Lang S, et al. Phenotypic and functional characteristics of CD4+ CD39+ FOXP3+ and CD4+ CD39+ FOXP3neg T-cell subsets in cancer patients. Eur J Immun. 2012;42(7):1876–85. https://doi.org/10.1002/eji.201142347.

    Article  CAS  Google Scholar 

  23. Cai XY, Wang XF, Li J, Dong JN, Liu JQ, Li NP, et al. Overexpression of CD39 and high tumoral CD39+/CD8+ ratio are associated with adverse prognosis in resectable gastric cancer. Int J Clin Exp Pathol. 2015;8(11):14757–64.

    PubMed  PubMed Central  Google Scholar 

  24. Turnis ME, Sawant DV, Szymczak-Workman AL, Andrews LP, Delgoffe GM, Yano H, et al. Interleukin-35 limits anti-tumor immunity. Immunity. 2016;44(2):316–29. https://doi.org/10.1016/j.immuni.2016.01.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Syed Khaja AS, Toor SM, El Salhat H, Faour I, Ul Haq N, Ali BR, et al. Preferential accumulation of regulatory T cells with highly immunosuppressive characteristics in breast tumor microenvironment. Oncotarget. 2017;8(20):33159–71. https://doi.org/10.18632/oncotarget.16565.

    Article  PubMed  Google Scholar 

  26. Krausz LT, Fischer-Fodor E, Major ZZ, Fetica B. GITR-expressing regulatory T-cell subsets are increased in tumor-positive lymph nodes from advanced breast cancer as compared to tumor-negative lymph nodes. Int J Immunopathol Pharmacol. 2012;25(1):59–66. https://doi.org/10.1177/039463201202500108.

    Article  CAS  PubMed  Google Scholar 

  27. Perfilyeva Y, Ostapchuk Y, Aktas Cetin E, Yilmaz A, Deniz G, Talaeva S, et al. Hyaluronan-binding T regulatory cells in peripheral blood of breast cancer. Clin Cell Immunol. 2015;6(1):286. https://doi.org/10.4172/2155-9899.1000286.

    Article  Google Scholar 

  28. Hamidinia M, Ghafourian Boroujerdnia M, Talaiezadeh A, Solgi G, Roshani R, Iranprast S, Khodadadi A. Increased P-35, EBI3 transcripts and other Tregs markers in peripheral blood mononuclear cells of breast cancer with different clinical stages. Adv Pharm Bull. 2015;5:261–267. https://doi.org/10.15171/apb.2015.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gagliani N, Magnani CF, Huber S, Gianolini ME, Pala M, Licona-Limon P, et al. Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat Med. 2013;19(6):739–46. https://doi.org/10.1038/nm.3179.

    Article  CAS  PubMed  Google Scholar 

  30. Bergmann C, Strauss L, Wang Y, Szczepanski MJ, Lang S, Johnson JT, et al. T regulatory type 1 cells in squamous cell carcinoma of the head and neck: mechanisms of suppression and expansion in advanced disease. Clin Cancer Res. 2008;14(12):3706–15. https://doi.org/10.1158/1078-0432.CCR-07-5126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cavani A, Nasorri F, Prezzi C, Sebastiani S, Albanesi C, Girolomoni G. Human CD4+ T lymphocytes with remarkable regulatory functions on dendritic cells and nickel-specific Th1 immune responses. J Invest Dermatol. 2000;114(2):295–302. https://doi.org/10.1046/j.1523-1747.2000.00881.x.

    Article  CAS  PubMed  Google Scholar 

  32. Chen J, Chen Z. The effect of immune microenvironment t on the progression and prognosis of colorectal cancer. Med Oncol. 2014;31:82. https://doi.org/10.1007/s12032-014-0082-9.

    Article  CAS  PubMed  Google Scholar 

  33. Adalid-Peralta L, Fragoso G, Fleury A, Sciutto E. Mechanisms underlying the induction of regulatory T cells and its relevance in the adaptive immune response in parasitic infections. Int J Biol Sci. 2011;7(9):1412–26. https://doi.org/10.7150/ijbs.7.1412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Changkija B, Konwar R. Role of interleukin-10 in breast cancer. Breast Cancer Res Treat. 2012;133(1):11–21. https://doi.org/10.1007/s10549-011-1855-x.

    Article  PubMed  Google Scholar 

  35. Chen G, Liang Y, Guan X, Chen H, Liu Q, Lin B, et al. Circulating low IL-23: IL-35 cytokine ratio promotes progression associated with poor prognosis in breast cancer. Am J Transl Res. 2016;8(5):2255–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ostapchuk YO, Cetin EA, Perfilyeva YV, Yilmaz A, Skiba YA, Chirkin AP, et al. Peripheral blood NK cells expressing HLA-G, IL-10 and TGF-β in healthy donors and breast cancer. Cell Immunol. 2015;298(1–2):37–46. https://doi.org/10.1016/j.cellimm.2015.09.002.

    Article  CAS  PubMed  Google Scholar 

  37. Deeb N, Mehanna RA. Assessment of maturation status of tumor-infiltrating dendritic cells in invasive ductal carcinoma of the breast: relation with vascular endothelial growth factor expression. Turk Patol Derg. 2013;29(3):193–200. https://doi.org/10.5146/tjpath.2013.01186.

    Article  Google Scholar 

  38. Gregori S, Goudy KS, Roncarolo MG. The cellular and molecular mechanisms of immuno-suppression by human type 1 regulatory T cells. Front Immunol. 2012;3:30. https://doi.org/10.3389/fimmu.2012.00030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant AP05131691 “Molecular mechanisms of influence of T regulatory cells on tumor cell activity” of Science Committee of Ministry of education and science of the Republic of Kazakhstan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yekaterina O. Ostapchuk.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostapchuk, Y.O., Perfilyeva, Y.V., Kustova, E.A. et al. Functional heterogeneity of circulating T regulatory cell subsets in breast cancer patients. Breast Cancer 25, 687–697 (2018). https://doi.org/10.1007/s12282-018-0874-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-018-0874-4

Keywords

Navigation