Skip to main content

Advertisement

Log in

Regulatory B cells contribute to the impaired antitumor immunity in ovarian cancer patients

  • Original Article
  • Published:
Tumor Biology

Abstract

Multiple factors in the tumor microenvironment were found to inhibit antitumor adaptive immune responses, allowing tumor persistence and growth. In this study, ascites from ovarian cancer patients were collected. We observed that a population of interleukin-10+ B (IL-10+ B) cells was preferentially enriched in the ascites. This population was associated with naive B cell phenotype or IgM or class-switched memory B cell phenotypes. The frequencies of IL-10+ B cells were negatively correlated with the frequencies of interferon gamma-producing (IFN-g+) CD8+ T cells and were positively correlated with the frequencies of Foxp3+ CD4+ T cells. To examine whether increased IL-10+ B cells in ascites could directly result in increased suppression of IFN-g production by CD8+ T cells, we cocultured CD8+ T cells with autologous blood B cells or ascitic B cells and found that CD8+ T cells cocultured with ascitic B cells demonstrated significantly suppressed IFN-g production. This suppression was in part mediated by IL-10 as well as low CD80/CD86 expression, since depletion of IL-10 and stimulation of CD28 partially reverted IL-10+ B cell-mediated suppression. Together, these data demonstrated an additional regulatory mechanism in the tumor microenvironment, which utilizes IL-10+ B cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brichard VG, Lejeune D. GSK’s antigen-specific cancer immunotherapy programme: pilot results leading to phase III clinical development. Vaccine. 2007;25:B61–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17916463.

    Article  CAS  PubMed  Google Scholar 

  2. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991;254:1643–7.

    Article  PubMed  Google Scholar 

  3. Topalian SL, Hom SS, Kawakami Y, Mancini M, Schwartzentruber DJ, Zakut R, et al. Recognition of shared melanoma antigens by human tumor-infiltrating lymphocytes. J Immunother. 1992;12:203–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1445813.

    Article  CAS  PubMed  Google Scholar 

  4. Monach PA, Meredith SC, Siegel CT, Schreiber H. A unique tumor antigen produced by a single amino acid substitution. Immunity. 1995;2:45–59. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7600302.

    Article  CAS  PubMed  Google Scholar 

  5. Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT, et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med. 2013;5:200ra116. Available from: http://stm.sciencemag.org/content/5/200/200ra116.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Herbst RS, Soria J-C, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515:563–7. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved; Available from: http://dx.doi.org/10.1038/nature14011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Crespo J, Sun H, Welling TH, Tian Z, Zou W. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol. 2013;25:214–21. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3636159&tool=pmcentrez&rendertype=abstract.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nishikawa H, Jäger E, Ritter G, Old LJ, Gnjatic S. CD4+ CD25+ regulatory T cells control the induction of antigen-specific CD4+ helper T cell responses in cancer patients. Blood. 2005;106:1008–11.

    Article  CAS  PubMed  Google Scholar 

  9. Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41:49–61. Elsevier. Available from: http://www.cell.com/article/S1074761314002301/fulltext.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hagemann T, Wilson J, Burke F, Kulbe H, Li NF, Plüddemann A, et al. Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J Immunol. 2006;176:5023–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16585599.

    Article  CAS  PubMed  Google Scholar 

  11. Marchetti C, Pisano C, Facchini G, Bruni GS, Magazzino FP, Losito S, et al. First-line treatment of advanced ovarian cancer: current research and perspectives. Expert Rev Anticancer Ther. 2010;10:47–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20014885.

    Article  PubMed  Google Scholar 

  12. Nielsen JS, Sahota RA, Milne K, Kost SE, Nesslinger NJ, Watson PH, et al. CD20+ tumor-infiltrating lymphocytes have an atypical CD27—memory phenotype and together with CD8+ T cells promote favorable prognosis in ovarian cancer. Clin Cancer Res. 2012;18:3281–92.

    Article  CAS  PubMed  Google Scholar 

  13. Nelson BH. The impact of T-cell immunity on ovarian cancer outcomes. Immunol Rev. 2008;222:101–16. Available from: http://onlinelibrary.wiley.com.ezproxy.library.uvic.ca/doi/10.1111/j.1600-065X.2008.00614.x/abstract.

    Article  CAS  PubMed  Google Scholar 

  14. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A. 2005;102:18538–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blair PA, Noreña LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR, et al. CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity. 2010;32:129–40. Available from: http://www.hubmed.org/display.cgi?uids=20079667.

    Article  CAS  PubMed  Google Scholar 

  16. Nelson BH. CD20+ B cells: the other tumor-infiltrating lymphocytes. J Immunol. 2010;185:4977–82.

    Article  CAS  PubMed  Google Scholar 

  17. Sayi A, Kohler E, Toller IM, Flavell RA, Müller W, Roers A, et al. TLR-2-activated B cells suppress Helicobacter-induced preneoplastic gastric immunopathology by inducing T regulatory-1 cells. J Immunol. 2011;186:878–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21149607.

    Article  CAS  PubMed  Google Scholar 

  18. Mangan NE, Fallon RE, Smith P, van Rooijen N, McKenzie AN, Fallon PG. Helminth infection protects mice from anaphylaxis via IL-10-producing B cells. J Immunol. 2004;173:6346–56.

    Article  CAS  PubMed  Google Scholar 

  19. Gray M, Miles K, Salter D, Gray D, Savill J. Apoptotic cells protect mice from autoimmune inflammation by the induction of regulatory B cells. Proc Natl Acad Sci U S A. 2007;104:14080–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lemoine S, Morva A, Youinou P, Jamin C. Human T cells induce their own regulation through activation of B cells. J Autoimmun. 2011;36:228–38. Available from: http://dx.doi.org/10.1016/j.jaut.2011.01.005.

    Article  CAS  PubMed  Google Scholar 

  21. Olkhanud PB, Damdinsuren B, Bodogai M, Gress RE, Sen R, Wejksza K, et al. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4+ T cells to T-regulatory cells. Cancer Res. 2011;71:3505–15. Available from: http://cancerres.aacrjournals.org/content/71/10/3505.full.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Inoue S, Leitner WW, Golding B, Scott D. Inhibitory effects of B cells on antitumor immunity. Cancer Res. 2006;66:7741–7. Available from: http://www.hubmed.org/display.cgi?uids=16885377.

    Article  CAS  PubMed  Google Scholar 

  23. Liu J, Zhan W, Kim CJ, Clayton K, Zhao H, Lee E, et al. IL-10-producing B cells are induced early in HIV-1 infection and suppress HIV-1-specific T cell responses. PLoS One. 2014;9(2):e89236. Available from: http://www.hubmed.org/display.cgi?uids=24586620.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Matsushita T, Yanaba K, Bouaziz JD, Fujimoto M, Tedder TF. Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J Clin Invest. 2008;118:3420–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Das A, Ellis G, Pallant C, Lopes ARR, Khanna P, Peppa D, et al. IL-10-producing regulatory B cells in the pathogenesis of chronic hepatitis B virus infection. J Immunol. 2012;189:3925–35. Available from: http://www.hubmed.org/display.cgi?uids=22972930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Palanichamy A, Barnard J, Zheng B, Owen T, Quach T, Wei C, et al. Novel human transitional B cell populations revealed by B cell depletion therapy. J Immunol. 2009;182:5982–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sims GP, Ettinger R, Shirota Y, Yarboro CH, Illei GG, Lipsky PE. Identification and characterization of circulating human transitional B cells. Blood. 2005;105:4390–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang X. Regulatory functions of innate-like B cells. Cell Mol Immunol. 2013;10:113–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23396472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Plebani A, Lougaris V, Soresina A, Meini A, Zunino F, Losi CG, et al. A novel immunodeficiency characterized by the exclusive presence of transitional B cells unresponsive to CpG. Immunology. 2007;121:183–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Siewe B, Stapleton JT, Martinson J, Keshavarzian A, Kazmi N, Demarais PM, et al. Regulatory B cell frequency correlates with markers of HIV disease progression and attenuates anti-HIV CD8+ T cell function in vitro. J Leukoc Biol. 2013;93:811–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23434518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Geffroy-Luseau A, Chiron D, Descamps G, Jégo G, Amiot M, Pellat-Deceunynck C. TLR9 ligand induces the generation of CD20+ plasmablasts and plasma cells from CD27+ memory B-cells. Front Immunol. 2011;2:83. Available from: http://journal.frontiersin.org/article/10.3389/fimmu.2011.00083/abstract.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Shandong Provincial Medical and Health Science Technology Development Project (2014WS0011) and Jinan Science Technology Development Project (2014–34).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wei.

Additional information

Xin Wei and Yangqiu Jin contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Jin, Y., Tian, Y. et al. Regulatory B cells contribute to the impaired antitumor immunity in ovarian cancer patients. Tumor Biol. 37, 6581–6588 (2016). https://doi.org/10.1007/s13277-015-4538-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4538-0

Keywords

Navigation