Skip to main content

Advertisement

Log in

Characterizing the immune microenvironment in high-risk ductal carcinoma in situ of the breast

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

The recent increase in the incidence of ductal carcinoma in situ (DCIS) has sparked debate over the classification and treatment of this disease. Although DCIS is considered a precursor lesion to invasive breast cancer, some DCIS may have more or less risk than is realized. In this study, we characterized the immune microenvironment in DCIS to determine if immune infiltrates are predictive of recurrence.

Methods

Fifty-two cases of high-grade DCIS (HG-DCIS), enriched for large lesions and a history of recurrence, were age matched with 65 cases of non-high-grade DCIS (nHG-DCIS). Immune infiltrates were characterized by single- or dual-color staining of FFPE sections for the following antigens: CD4, CD8, CD20, FoxP3, CD68, CD115, Mac387, MRC1, HLA-DR, and PCNA. Nuance multispectral imaging software was used for image acquisition. Protocols for automated image analysis were developed using CellProfiler. Immune cell populations associated with risk of recurrence were identified using classification and regression tree analysis.

Results

HG-DCIS had significantly higher percentages of FoxP3+ cells, CD68+ and CD68+PCNA+ macrophages, HLA-DR+ cells, CD4+ T cells, CD20+ B cells, and total tumor infiltrating lymphocytes compared to nHG-DCIS. A classification tree, generated from 16 immune cell populations and 8 clinical parameters, identified three immune cell populations associated with risk of recurrence: CD8+HLADR+ T cells, CD8+HLADR T cells, and CD115+ cells.

Conclusion

These findings suggest that the tumor immune microenvironment is an important factor in identifying DCIS cases with the highest risk for recurrence and that manipulating the immune microenvironment may be an efficacious strategy to alter or prevent disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siziopikou KP (2013) Ductal carcinoma in situ of the breast: current concepts and future directions. Arch Pathol Lab Med 137(4):462–466. doi:10.5858/arpa.2012-0078-RA

    Article  CAS  PubMed  Google Scholar 

  2. Bianchi S, Vezzosi V (2008) Microinvasive carcinoma of the breast. Pathol Oncol Res 14(2):105–111. doi:10.1007/s12253-008-9054-8

    Article  PubMed  Google Scholar 

  3. Rosner D, Lane WW, Penetrante R (1991) Ductal carcinoma in situ with microinvasion. A curable entity using surgery alone without need for adjuvant therapy. Cancer 67(6):1498–1503

    Article  CAS  PubMed  Google Scholar 

  4. Solin LJ, Fowble BL, Yeh IT, Kowalyshyn MJ, Schultz DJ, Weiss MC, Goodman RL (1992) Microinvasive ductal carcinoma of the breast treated with breast-conserving surgery and definitive irradiation. Int J Radiat Oncol Biol Phys 23(5):961–968

    Article  CAS  PubMed  Google Scholar 

  5. Esserman L, Yau C (2015) Rethinking the standard for ductal carcinoma in situ treatment. JAMA Oncol 1(7):881–883. doi:10.1001/jamaoncol.2015.2607

    Article  PubMed  Google Scholar 

  6. Narod SA, Iqbal J, Giannakeas V, Sopik V, Sun P (2015) Breast cancer mortality after a diagnosis of ductal carcinoma in situ. JAMA Oncol 1(7):888–896. doi:10.1001/jamaoncol.2015.2510

    Article  PubMed  Google Scholar 

  7. Bijker N, Meijnen P, Peterse JL, Bogaerts J, Van Hoorebeeck I, Julien JP, Gennaro M, Rouanet P, Avril A, Fentiman IS, Bartelink H, Rutgers EJ (2006) Breast-conserving treatment with or without radiotherapy in ductal carcinoma-in situ: ten-year results of European Organisation for Research and Treatment of Cancer randomized phase III trial 10853—a study by the EORTC Breast Cancer Cooperative Group and EORTC Radiotherapy Group. J Clin Oncol 24(21):3381–3387. doi:10.1200/JCO.2006.06.1366

    Article  PubMed  Google Scholar 

  8. Bijker N, Peterse JL, Duchateau L, Julien JP, Fentiman IS, Duval C, Di Palma S, Simony-Lafontaine J, de Mascarel I, van de Vijver MJ (2001) Risk factors for recurrence and metastasis after breast-conserving therapy for ductal carcinoma-in situ: analysis of European Organization for Research and Treatment of Cancer Trial 10853. J Clin Oncol 19(8):2263–2271

    CAS  PubMed  Google Scholar 

  9. Fisher B, Dignam J, Wolmark N, Mamounas E, Costantino J, Poller W, Fisher ER, Wickerham DL, Deutsch M, Margolese R, Dimitrov N, Kavanah M (1998) Lumpectomy and radiation therapy for the treatment of intraductal breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-17. J Clin Oncol 16(2):441–452

    CAS  PubMed  Google Scholar 

  10. Fisher B, Land S, Mamounas E, Dignam J, Fisher ER, Wolmark N (2001) Prevention of invasive breast cancer in women with ductal carcinoma in situ: an update of the National Surgical Adjuvant Breast and Bowel Project experience. Semin Oncol 28(4):400–418

    Article  CAS  PubMed  Google Scholar 

  11. Holmberg L, Garmo H, Granstrand B, Ringberg A, Arnesson LG, Sandelin K, Karlsson P, Anderson H, Emdin S (2008) Absolute risk reductions for local recurrence after postoperative radiotherapy after sector resection for ductal carcinoma in situ of the breast. J Clin Oncol 26(8):1247–1252. doi:10.1200/JCO.2007.12.7969

    Article  PubMed  Google Scholar 

  12. Houghton J, George WD, Cuzick J, Duggan C, Fentiman IS, Spittle M (2003) Radiotherapy and tamoxifen in women with completely excised ductal carcinoma in situ of the breast in the UK, Australia, and New Zealand: randomised controlled trial. Lancet 362(9378):95–102

    Article  PubMed  Google Scholar 

  13. Esserman LJ, Kumar AS, Herrera AF, Leung J, Au A, Chen YY, Moore DH, Chen DF, Hellawell J, Wolverton D, Hwang ES, Hylton NM (2006) Magnetic resonance imaging captures the biology of ductal carcinoma in situ. J Clin Oncol 24(28):4603–4610. doi:10.1200/JCO.2005.04.5518

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wai ES, Lesperance ML, Alexander CS, Truong PT, Moccia P, Culp M, Lindquist J, Olivotto IA (2011) Predictors of local recurrence in a population-based cohort of women with ductal carcinoma in situ treated with breast conserving surgery alone. Ann Surg Oncol 18(1):119–124. doi:10.1245/s10434-010-1214-x

    Article  PubMed  Google Scholar 

  15. Kurniawan ED, Rose A, Mou A, Buchanan M, Collins JP, Wong MH, Miller JA, Mann GB (2010) Risk factors for invasive breast cancer when core needle biopsy shows ductal carcinoma in situ. Arch Surg 145(11):1098–1104. doi:10.1001/archsurg.2010.243

    Article  PubMed  Google Scholar 

  16. Silverstein MJ (2003) The University of Southern California/Van Nuys prognostic index for ductal carcinoma in situ of the breast. Am J Surg 186(4):337–343

    Article  PubMed  Google Scholar 

  17. Silverstein MJ, Lagios MD (2015) Treatment selection for patients with ductal carcinoma in situ (DCIS) of the breast using the University of Southern California/Van Nuys (USC/VNPI) prognostic index. Breast J 21(2):127–132. doi:10.1111/tbj.12368

    Article  PubMed  Google Scholar 

  18. Adams S, Goldstein LJ, Sparano JA, Demaria S, Badve SS (2015) Tumor infiltrating lymphocytes (TILs) improve prognosis in patients with triple negative breast cancer (TNBC). Oncoimmunology 4(9):e985930. doi:10.4161/2162402X.2014.985930

    Article  PubMed  PubMed Central  Google Scholar 

  19. Campbell MJ, Tonlaar NY, Garwood ER, Huo D, Moore DH, Khramtsov AI, Au A, Baehner F, Chen Y, Malaka DO, Lin A, Adeyanju OO, Li S, Gong C, McGrath M, Olopade OI, Esserman LJ (2011) Proliferating macrophages associated with high grade, hormone receptor negative breast cancer and poor clinical outcome. Breast Cancer Res Treat 128(3):703–711. doi:10.1007/s10549-010-1154-y

    Article  PubMed  Google Scholar 

  20. de la Cruz-Merino L, Barco-Sanchez A, Henao Carrasco F, Nogales Fernandez E, Vallejo Benitez A, Brugal Molina J, Martinez Peinado A, Grueso Lopez A, Ruiz Borrego M, Manuel Codes, de Villena M, Sanchez-Margalet V, Nieto-Garcia A, Alba Conejo E, Casares Lagar N, Ibanez Martinez J (2013) New insights into the role of the immune microenvironment in breast carcinoma. Clin Dev Immunol 2013:785317. doi:10.1155/2013/785317

    PubMed  PubMed Central  Google Scholar 

  21. Gu-Trantien C, Loi S, Garaud S, Equeter C, Libin M, de Wind A, Ravoet M, Le Buanec H, Sibille C, Manfouo-Foutsop G, Veys I, Haibe-Kains B, Singhal SK, Michiels S, Rothe F, Salgado R, Duvillier H, Ignatiadis M, Desmedt C, Bron D, Larsimont D, Piccart M, Sotiriou C, Willard-Gallo K (2013) CD4(+) follicular helper T cell infiltration predicts breast cancer survival. J Clin Investig 123(7):2873–2892. doi:10.1172/JCI67428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ibrahim EM, Al-Foheidi ME, Al-Mansour MM, Kazkaz GA (2014) The prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancer: a meta-analysis. Breast Cancer Res Treat 148(3):467–476. doi:10.1007/s10549-014-3185-2

    Article  CAS  PubMed  Google Scholar 

  23. Jiang D, Gao Z, Cai Z, Wang M, He J (2015) Clinicopathological and prognostic significance of FOXP3+ tumor infiltrating lymphocytes in patients with breast cancer: a meta-analysis. BMC Cancer 15(1):727. doi:10.1186/s12885-015-1742-7

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lee HJ, Park IA, Song IH, Shin SJ, Kim JY, Yu JH, Gong G (2015) Tertiary lymphoid structures: prognostic significance and relationship with tumour-infiltrating lymphocytes in triple-negative breast cancer. J Clin Pathol 69(5):422–430. doi:10.1136/jclinpath-2015-203089

    Article  PubMed  Google Scholar 

  25. Matsumoto H, Koo SL, Dent R, Tan PH, Iqbal J (2015) Role of inflammatory infiltrates in triple negative breast cancer. J Clin Pathol 68(7):506–510. doi:10.1136/jclinpath-2015-202944

    Article  CAS  PubMed  Google Scholar 

  26. Miyashita M, Sasano H, Tamaki K, Hirakawa H, Takahashi Y, Nakagawa S, Watanabe G, Tada H, Suzuki A, Ohuchi N, Ishida T (2015) Prognostic significance of tumor-infiltrating CD8+ and FOXP3+ lymphocytes in residual tumors and alterations in these parameters after neoadjuvant chemotherapy in triple-negative breast cancer: a retrospective multicenter study. Breast Cancer Res 17(1):124. doi:10.1186/s13058-015-0632-x

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mukhtar RA, Nseyo O, Campbell MJ, Esserman LJ (2011) Tumor-associated macrophages in breast cancer as potential biomarkers for new treatments and diagnostics. Expert Rev Mol Diagn 11(1):91–100. doi:10.1586/erm.10.97

    Article  CAS  PubMed  Google Scholar 

  28. Obeid E, Nanda R, Fu YX, Olopade OI (2013) The role of tumor-associated macrophages in breast cancer progression (review). Int J Oncol 43(1):5–12. doi:10.3892/ijo.2013.1938

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Watanabe MA, Oda JM, Amarante MK, Cesar Voltarelli J (2010) Regulatory T cells and breast cancer: implications for immunopathogenesis. Cancer Metastasis Rev 29(4):569–579. doi:10.1007/s10555-010-9247-y

    Article  CAS  PubMed  Google Scholar 

  30. Lee AH, Happerfield LC, Bobrow LG, Millis RR (1997) Angiogenesis and inflammation in ductal carcinoma in situ of the breast. J Pathol 181(2):200–206. doi:10.1002/(SICI)1096-9896(199702)181:2<200:AID-PATH726>3.0.CO;2-K

    Article  CAS  PubMed  Google Scholar 

  31. Ramachandra S, Machin L, Ashley S, Monaghan P, Gusterson BA (1990) Immunohistochemical distribution of c-erbB-2 in in situ breast carcinoma–a detailed morphological analysis. J Pathol 161(1):7–14. doi:10.1002/path.1711610104

    Article  CAS  PubMed  Google Scholar 

  32. Lal A, Chan L, Devries S, Chin K, Scott GK, Benz CC, Chen YY, Waldman FM, Hwang ES (2013) FOXP3-positive regulatory T lymphocytes and epithelial FOXP3 expression in synchronous normal, ductal carcinoma in situ, and invasive cancer of the breast. Breast Cancer Res Treat 139(2):381–390. doi:10.1007/s10549-013-2556-4

    Article  CAS  PubMed  Google Scholar 

  33. Sharma M, Beck AH, Webster JA, Espinosa I, Montgomery K, Varma S, van de Rijn M, Jensen KC, West RB (2010) Analysis of stromal signatures in the tumor microenvironment of ductal carcinoma in situ. Breast Cancer Res Treat 123(2):397–404. doi:10.1007/s10549-009-0654-0

    Article  CAS  PubMed  Google Scholar 

  34. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM (2006) Cell Profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7(10):R100. doi:10.1186/gb-2006-7-10-r100

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kamentsky L, Jones TR, Fraser A, Bray MA, Logan DJ, Madden KL, Ljosa V, Rueden C, Eliceiri KW, Carpenter AE (2011) Improved structure, function and compatibility for cell profiler: modular high-throughput image analysis software. Bioinformatics 27(8):1179–1180. doi:10.1093/bioinformatics/btr095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thompson E, Taube JM, Elwood H, Sharma R, Meeker A, Warzecha HN, Argani P, Cimino-Mathews A, Emens LA (2016) The immune microenvironment of breast ductal carcinoma in situ. Mod Pathol 29(3):249–258. doi:10.1038/modpathol.2015.158

    Article  CAS  PubMed  Google Scholar 

  37. Solin LJ, Gray R, Baehner FL, Butler SM, Hughes LL, Yoshizawa C, Cherbavaz DB, Shak S, Page DL, Sledge GW Jr, Davidson NE, Ingle JN, Perez EA, Wood WC, Sparano JA, Badve S (2013) A multigene expression assay to predict local recurrence risk for ductal carcinoma in situ of the breast. J Natl Cancer Inst 105(10):701–710. doi:10.1093/jnci/djt067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Knopfelmacher A, Fox J, Lo Y, Shapiro N, Fineberg S (2015) Correlation of histopathologic features of ductal carcinoma in situ of the breast with the oncotype DX DCIS score. Mod Pathol 28(9):1167–1173. doi:10.1038/modpathol.2015.79

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Breast Cancer Research Foundation (Esserman), the National Institutes of Health, National Cancer Institute Grant P50 CA 58207 (Gray), and the Department of the Army, award: W81XWH-07-1-0663 and W81XWH-11-1-0549-BC100597P1 (Esserman, Gray, Baehner). The U.S. Army Medical Research Acquisition Activity, 820 Chandler Street, Fort Detrick, MD 21702-5014 is the awarding and administering acquisition office. The content of the information does not necessarily reflect the position or the policy of the Government, and no official endorsement should be inferred.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Campbell.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campbell, M.J., Baehner, F., O’Meara, T. et al. Characterizing the immune microenvironment in high-risk ductal carcinoma in situ of the breast. Breast Cancer Res Treat 161, 17–28 (2017). https://doi.org/10.1007/s10549-016-4036-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-016-4036-0

Keywords

Navigation