Skip to main content
Log in

Bacterial structure and characterization of plant growth promoting and oil degrading bacteria from the rhizospheres of mangrove plants

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Most oil from oceanic spills converges on coastal ecosystems, such as mangrove forests, which are threatened with worldwide disappearance. Particular bacteria that inhabit the rhizosphere of local plant species can stimulate plant development through various mechanisms; it would be advantageous if these would also be capable of degrading oil. Such bacteria may be important in the preservation or recuperation of mangrove forests impacted by oil spills. This study aimed to compare the bacterial structure, isolate and evaluate bacteria able to degrade oil and stimulate plant growth, from the rhizospheres of three mangrove plant species. These features are particularly important taking into account recent policies for mangrove bioreme-diation, implying that oil degradation as well as plant maintenance and health are key targets. Fifty-seven morphotypes were isolated from the mangrove rhizospheres on Bushneil-Haas (BH) medium supplemented with oil as the sole carbon source and tested for plant growth promotion. Of this strains, 60% potentially fixed nitrogen, 16% showed antimicrobial activity, 84% produced siderophores, 51% had the capacity to solubilize phosphate, and 33% produced the indole acetic acid hormone. Using gas chromatography, we evaluated the oil-degrading potential of ten selected strains that had different morphologies and showed Plant Growth Promoting Rhizobacteria (PGPR) features. The ten tested strains showed a promising degradation profile for at least one compound present in the oil. Among degrader strains, 46% had promising PGPR potential, having at least three of the above capacities. These strains might be used as a consortium, allowing the concomitant degradation of oil and stimulation of mangrove plant survival and maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S., W. Gish, W. Miller, E. Myers, and D. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    PubMed  CAS  Google Scholar 

  • Bakken, L.R. and V. Lindahl. 1995. Recovery of bacterial cells from soil. In J.D. van Elsas and J.T. Trevors (ed.), Nucleic acids in the environment: Methods and applications, pp. 9–27. Springer-Verlag, Heidelberg, Germany.

    Google Scholar 

  • Barbier, E.B., E.W. Koch, B.R. Siliman, S.D. Hacker, E. Wolanski, J. Primavera, E.F. Granek, and et al. 2008. Coastal ecosystembased management with nonlinear ecological functions and values. Science 318, 321–323.

    Article  Google Scholar 

  • Barbieri, P., T. Zanelli, E. Galli, and G. Zanelli. 1986. Wheat inoculation with Azospirillum brasilense Sp6 and some mutants altered in nitrogen fixation and indole-3-acetic acid production. FEMS Microbiol. Lett. 36, 87–90.

    Article  CAS  Google Scholar 

  • Bashan, Y. and G. Holguin. 1997. Azospirillum plant relationships environmental and physiological advances (1990–1996). Can. J. Microbiol. 43, 103–121.

    Article  CAS  Google Scholar 

  • Bashan, Y. and G. Holguin. 2002. Plant growth-promoting bacteria: A potential tool for arid mangrove reforestation. Trees 16, 159–166.

    Article  CAS  Google Scholar 

  • Bent, E., S. Tuzun, C.P. Chanway, and S. Eneback. 2001. Alterations in plant growth and in root hormone levels of lodgepole pinesinoculated with rhizobacteria. Can. J. Microbiol. 47, 793–800.

    Article  PubMed  CAS  Google Scholar 

  • Brito, E.M., R. Guyoneaud, M. Goni-Urriza, A. Ranchou-Peyruse, A. Verbaere, M.A.C. Crapez, J.C.A. Wasserman, and R. Duran. 2006. Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara bay, Brazil. Res. Microbiol. 157, 752–762.

    Article  PubMed  CAS  Google Scholar 

  • Burd, G.I., D.G. Dixon, and B.R. Glick. 2000. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can. J. Microbiol. 46, 237–245.

    Article  PubMed  CAS  Google Scholar 

  • Burns, K.A., S. Codi, and N.C. Duke. 2000. Gladstone, Australia field studies: Weathering and degradation of hydrocarbons in oiled mangrove and salt marsh sediments with and without the application of an experimental bioremediation protocol. Mar. Pollut. Bull. 41, 392–402.

    Article  CAS  Google Scholar 

  • Burns, K.A., S. Levings, and S. Garrity. 1993. How many years before mangrove ecosystem recover from catastrophic oil spills? Mar. Pollut. Bull. 26, 239–248.

    Article  CAS  Google Scholar 

  • Cheng, Z., Y.Y.C. Wei, W.W.L. Sung, B.R. Glick, and B.J. McConkey. 2009. Proteomic analysis of the response of the plant growth-promoting bacterium Pseudomonas putida UW4 to nickel stress. Proteome Sci. 7, 18.

    Article  PubMed  Google Scholar 

  • Costa, R., M. Götz, N. Mrotzek, G. Berg, J. Lottmann, and K. Smalla. 2006. Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of different microbial guilds. FEMS Microbiol. Ecol. 56, 236–249.

    Article  PubMed  CAS  Google Scholar 

  • Duke, N.C., K.A. Burns, R.P.J. Swannell, O. Dalhaus, and R. Rupp. 2000. Dispersant use and a bioremediation strategy as alternate means of reducing impacts of large oil spills on mangroves: The Gladstone field trials. Mar. Pollut. Bull. 41, 403–412.

    Article  CAS  Google Scholar 

  • Duke, N.C., J.O. Meynecke, S. Dittmann, A.M. Ellison, K. Anger, U. Berguer, S. Cannicci, and et al. 2007. A world without mangroves? Science 317, 41–42.

    Article  PubMed  CAS  Google Scholar 

  • Füchtenbusch, B., D. Wullbrandt, and A. Steinbuchel. 2000. Production of polyhydroxyalkanoic acids by Ralstonia eutropha and Pseudomonas oleovorans from an oil remaining from biotechnological rhamnose production. Appl. Microbiol. Biotechnol. 53, 167–172.

    Article  PubMed  Google Scholar 

  • Garbeva, P., J.D. van Elsas, and J.A. Veen. 2007. Rhizosphere microbial community and its response to plant species and soil history. Plant Soil 302, 19–32.

    Article  Google Scholar 

  • Glick, B.R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41, 109–117.

    Article  CAS  Google Scholar 

  • Gomes, N.C.M., L.R. Borges, R. Paranhos, F.N. Pinto, L.C. Mendonça-Hagler, and K. Smalla. 2008. Exploring the diversity of bacterial communities in sediments of urban mangrove forests. FEMS Microbiol. Ecol. 66, 96–109.

    Article  CAS  Google Scholar 

  • Gulati, A., P. Vyas, and R.C. Kasana. 2009. Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr. Microbiol. 58, 371–377.

    Article  PubMed  CAS  Google Scholar 

  • Heuer, H. and K. Smalla. 1997. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis for studying soil microbial communities, pp. 353–373. In J.D. van Elsas, J. Trevors, and E.M.H. Wellington (eds.) Modern Soil Microbiology. Marcel Dekker, New York, NY, USA.

    Google Scholar 

  • Kang, S., G. Joo, M. Hamayun, C. Na, D. Shin, H.Y. Kim, J. Hong, and I. Lee. 2009. Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol. Lett. 31, 277–281.

    Article  PubMed  CAS  Google Scholar 

  • Karakurt, H. and R. Aslantas. 2010. Effects of some plants growth promoting Rizobacteria (PGPR) strains on plant growth and leaf nutrient content of apple. J. Fruit. Ornam. Plant. Res. 102, 101–119.

    Google Scholar 

  • Kathiresan, K. and B.L. Binghan. 2001. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 40, 81–251.

    Article  Google Scholar 

  • Kloepper, J.W., J. Leong, M. Teintze, and M.N. Schroth. 1980. Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr. Microbiol. 4, 317.

    Article  CAS  Google Scholar 

  • Kumar, S., K. Tamura, and M. Nei. 1993. MEGA: Molecular Evolutionary Genetics Analysis, Ver. 1.0. The Pennsylvania State University, Philadelphia, USA.

    Google Scholar 

  • Li, H., Q. Zhao, M.C. Boufadel, and A.D. Venosa. 2007. A universal nutrient application strategym for the bioremediation of oil-polluted beaches. Mar. Pollut. Bull. 54, 1146–1161.

    Article  PubMed  CAS  Google Scholar 

  • Lucy, M., E. Reed, and B.R. Glick. 2004. Application of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek 86, 1–25.

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg, B.J., L. Dekkers, and G.V. Bloemberg. 2001. Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol. 39, 461–490.

    Article  PubMed  CAS  Google Scholar 

  • Maciel-Souza, M.C., A. Macrae, A.G.T. Volpon, P.S. Ferreira, and L.C. Mendonça-Hagler. 2006. Chemical and microbiological characterization of mangrove sediments after a large oil-spill in Guanabara Bay — RJ — Brazil. Braz. J. Microbiol. 37, 262–266.

    Article  CAS  Google Scholar 

  • Monteiro, J.M., R.E. Vollú, M.R.R. Coelho, C.S. Alviano, A.F. Blank, and L. Seldin. 2009. Comparison of the bacterial community and characterization of plant growth promoting Rhizobacteria from different genotypes of Chrysopogon zizanioides (L.) Roberty (Vetiver) Rhizospheres. J. Microbiol. 47, 1–8.

    Article  Google Scholar 

  • Mota, F.F., E.A. Gomes, I.E. Marriel, E. Paiva, and L. Seldin. 2008. Effect of liming on the structure of bacterial and fungal communities in bulk soil and rhizospheres of aluminum-tolerant and aluminum-sensitive maize (Zea mays L.) lines cultivated in Cerrado soil. J. Microbiol. Biotechnol. 18, 805–814.

    PubMed  Google Scholar 

  • Mota, F.F., A. Nobrega, I.E. Marriel, E. Paiva, and L. Seldin. 2002. Genetic diversity of Paenibacillus polymyxa populations isolated from the rhizosphere of four cultivars of maize (Zea mays) planted in Cerrado soil. Appl. Soil Ecol. 20, 119–132.

    Article  Google Scholar 

  • Patten, C. and B.R. Glick. 1996. Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 42, 207–220.

    Article  PubMed  CAS  Google Scholar 

  • Peixoto, R.S., R.F. Silva, and A.S. Rosado. 2009. Biorremediaçãoo de ambientes contaminados com petróleo e seus derivados. Microbiologia in foco 8, 17–30.

    Google Scholar 

  • Poly, F., L.J. Monrozier, and R. Bally. 2001. Impovement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res. Microbiol. 152, 95–103.

    Article  PubMed  CAS  Google Scholar 

  • Richard, J.Y. and T.M. Vogel. 1999. Characterization of a soil bacterial consortium capable of degrading diesel fuel. Int. Biodet. Biod. 44, 93–100.

    Article  CAS  Google Scholar 

  • Richter, B. and K. Smalla. 2007. Screening of rhizosphere and soil bacteria for transformability. Environ. Biosafety 6, 91–99.

    Article  CAS  Google Scholar 

  • Rodriguez, H., S. Vesely, S. Shah, and B.R. Glick. 2008. Isolation and characterization of nickel resistant Pseudomonas strains and their effect on the growth of non-transformed and transgenic canola plants. Curr. Microbiol. 57, 170–174.

    Article  PubMed  CAS  Google Scholar 

  • Rojas, A., G. Holguin, B. Glick, and Y. Bashan. 2001. Synergism between Phyllobacterium sp. (N2-fixer) and Bacillus licheniformis (P-solubilizer), both from a semi-arid mangrove rhizosphere. FEMS Microbiol. Ecol. 35, 181–187.

    Article  PubMed  CAS  Google Scholar 

  • Rosado, A.S., F.S. Azevedo, D.W.G. Cruz, and L. Seldin. 1998. Phenotypic and genetic diversity of Paenibacillus azotofixans strains isolated from rhizoplane or rhizosphere of different grasses. J. Appl. Microbiol. 84, 216–226.

    Article  Google Scholar 

  • Rosado, A.S. and L. Seldin. 1993. Production of a potentially novel anti-microbial substance by Bacillus polymyxa. World J. Microbiol. Biotechnol. 9, 521–528.

    Article  CAS  Google Scholar 

  • Santos, H.F., F.L. Carmo, J.E. Paes, A.S. Rosado, and R.S. Peixoto. 2010. Bioremediation of mangroves impacted by petroleum. Water Air Soil Poll. doi:10.1007/s11270-010-0536-4.

  • Schwyn, B. and J.B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47–56.

    Article  PubMed  CAS  Google Scholar 

  • Tang, Y.W. and J. Bonner. 1947. The enzymatic inactivation of indoleacetic acid. I. Some characteristics of the enzyme contained in pea seedlings. Arch. Biochem. 13, 11–25.

    PubMed  CAS  Google Scholar 

  • Timmusk, S., N. Grantcharov, and E.G.H. Wagner. 2005. Paenibacillus polymyxa invades plant roots and forms biofilms. Appl. Environ. Microbiol. 71, 7292–7300.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmouginm, and D.G. Higgins. 1997. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.

    Article  PubMed  CAS  Google Scholar 

  • Toledo, G., Y. Bashan, and A. Soeldner. 1995. In vitro colonization and increase in nitrogen fixation of seedling roots of black mangrove inoculated by a filamentous cyanobacteria. Can. J. Microbiol. 41, 1012–1020.

    Article  CAS  Google Scholar 

  • UNEP — United Nations Environment Programme. 1991. Determinations of petroleum hydrocarbons in sediments. Reference methods for marine pollution studies, n 20.

  • Vazquez, P., G. Holguin, M.E. Puente, A. Lopez-Cortes, and Y. Bashan. 2000. Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol. Fertil. Soils 30, 460–468.

    Article  CAS  Google Scholar 

  • von der Weid, I., V. Artursson, L. Seldin, and J.K. Jansson. 2005. Antifungal and root surface colonization properties of GFP-tagged Paenibacillus brasilensis PB177. World J. Microbiol. Biotechnol. 21, 1591–1597.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Silva Peixoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

do Carmo, F.L., dos Santos, H.F., Martins, E.F. et al. Bacterial structure and characterization of plant growth promoting and oil degrading bacteria from the rhizospheres of mangrove plants. J Microbiol. 49, 535–543 (2011). https://doi.org/10.1007/s12275-011-0528-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-011-0528-0

Keywords

Navigation