Skip to main content
Log in

Boosting the zinc storage performance of vanadium dioxide by integrated morphology engineering and carbon nanotube conductive networks

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Vanadium dioxide (VO2) with the advantages of high theoretical capacity and tunnel structure has attracted considerable promising candidates for aqueous zinc-ion batteries. Nevertheless, the intrinsic low electronic conductivity of VO2 results in an unsatisfactory electrochemical performance. Herein, a flower-like VO2/carbon nanotubes (CNTs) composite was obtained by a facile hydrothermal method. The unique flower-like morphology shortens the ion transport length and facilitates electrolyte infiltration. Meanwhile, the CNT conductive networks is in favor of fast electron transfer. A highly reversible zinc storage mechanism was revealed by ex-situ X-ray diffraction and X-ray photoelectron spectroscopy. As a result, the VO2/CNTs cathode exhibits a high reversible capacity (410 mAh·g−1), superior rate performance (305 mAh·g−1 at 5 A·g−1), and excellent cycling stability (a reversible capacity of 221 mAh·g−1 was maintained even after 2000 cycles). This work provides a guide for the design of high-performance cathode materials for aqueous zinc metal batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang, M. X.; Hu, Y. J.; Mao, B. G.; Wang, Y. X.; Yang, Z.; Meng, T.; Wang, X.; Cao, M. H. Strain-regulated Gibbs free energy enables reversible redox chemistry of chalcogenides for sodium ion batteries. Nat. Commun. 2022, 13, 5588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen, Z. B.; Wu, Q.; Han, X. R.; Wang, C.; Chen, J. L.; Hu, T.; He, Q.; Zhu, X. Y.; Yuan, D.; Chen, J. Y. et al. Converting commercial Zn foils into single (002)-textured Zn with millimeter-sized grains for highly reversible aqueous zinc batteries. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/ange.202401507.

  3. Li, R. T.; Du, Y. X.; Li, Y. H.; He, Z. X.; Dai, L.; Wang, L.; Wu, X. W.; Zhang, J. J.; Yi, J. Alloying strategy for high-performance zinc metal anodes. ACS Energy Lett. 2023, 8, 457–476.

    Article  CAS  Google Scholar 

  4. Li, T. J.; Sun, J. C.; Gao, S. Z.; Xiao, B.; Cheng, J. B.; Zhou, Y. L.; Sun, X. Q.; Jiang, F. Y.; Yan, Z. H.; Xiong, S. L. Superior sodium metal anodes enabled by sodiophilic carbonized coconut framework with 3D tubular structure. Adv. Energy Mater. 2021, 11, 2003699.

    Article  CAS  Google Scholar 

  5. Zhou, X. Z.; Wen, B.; Cai, Y. C.; Chen, X. M.; Li, L.; Zhao, Q.; Chou, S. J.; Li, F. J. interfacial engineering for oriented crystal growth toward dendrite-free Zn anode for aqueous zinc metal battery. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202402342.

  6. Song, Y.; Ruan, P. C.; Mao, C. W.; Chang, Y. X.; Wang, L.; Dai, L.; Zhou, P.; Lu, B. G.; Zhou, J.; He, Z. X. Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 2022, 14, 218.

    Article  CAS  Google Scholar 

  7. Wang, T. T.; Wang, P. J.; Pan, L.; He, Z. X.; Dai, L.; Wang, L.; Liu, S. D.; Jun, S. C.; Lu, B. G.; Liang, S. Q. et al. Stabling zinc metal anode with polydopamine regulation through dual effects of fast desolvation and ion confinement. Adv. Energy Mater. 2023, 13, 2203523.

    Article  CAS  Google Scholar 

  8. Meng, T.; Sun, P. P.; Yang, F.; Zhu, J.; Mao, B. G.; Zheng, L. R.; Cao, M. H. Double-atom dealloying-derived Frank partial dislocations in cobalt nanocatalysts boost metal-air batteries and fuel cells. Proc. Natl. Acad. Sci. USA 2022, 119, e2214089119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lv, T. T.; Peng, Y.; Zhang, G. X.; Jiang, S.; Yang, Z. L.; Yang, S. Y.; Pang, H. How about vanadium-based compounds as cathode materials for aqueous zinc ion batteries? Adv. Sci. 2023, 10, 2206907.

    Article  CAS  Google Scholar 

  10. Li, Y.; Peng, X. Y.; Li, X.; Duan, H.; Xie, S. Y.; Dong, L. B.; Kang, F. Y. Functional ultrathin separators proactively stabilizing zinc anodes for zinc-based energy storage. Adv. Mater. 2023, 35, 2300019.

    Article  CAS  Google Scholar 

  11. Qu, G.; Guo, K.; Chen, W. J.; Du, Y.; Wang, Y.; Tian, B. B.; Zhang, J. N. Cs-induced phase transformation of vanadium oxide for high-performance zinc-ion batteries. Energy Environ. Mater. 2023, 6, e12502.

    Article  CAS  Google Scholar 

  12. Du, M.; Liu, C. F.; Zhang, F.; Dong, W. T.; Zhang, X. F.; Sang, Y. H.; Wang, J. J.; Guo, Y. G.; Liu, H.; Wang, S. H. Tunable layered (Na,Mn)V8O20·nH2O cathode material for high-performance aqueous zinc ion batteries. Adv. Sci. 2020, 7, 2000083.

    Article  CAS  Google Scholar 

  13. Zuo, Y.; Meng, T. F.; Tian, H.; Ling, L.; Zhang, H. L.; Zhang, H.; Sun, X. H.; Cai, S. Enhanced H+ storage of a MnO2 cathode via a MnO2 nanolayer interphase transformed from manganese phosphate. ACS Nano. 2023, 17, 5600–5608.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, N.; Wang, J. C.; Guo, Y. F.; Wang, P. F.; Zhu, Y. R.; Yi, T. F. Insights on rational design and energy storage mechanism of Mn-based cathode materials towards high performance aqueous zinc-ion batteries. Coord. Chem. Rev. 2023, 479, 215009.

    Article  CAS  Google Scholar 

  15. He, Q.; Chen, Z. B.; Niu, X. Y.; Han, X. R.; Kang, T.; Chen, J. Y.; Ma, Y. W.; Zhao, J. Amorphous vanadium oxides for electrochemical energy storage. Nano Res. 2023, 16, 9195–9213.

    Article  CAS  Google Scholar 

  16. Lv, T. T.; Luo, X.; Yuan, G. Q.; Yang, S. Y.; Pang, H. Layered VO2@N-doped carbon composites for high-performance rechargeable aqueous zinc-ion batteries. Chem. Eng. J. 2022, 428, 131211.

    Article  CAS  Google Scholar 

  17. Gu, X.; Wang, J. T.; Zhao, X. B.; Jin, X.; Jiang, Y. Z.; Dai, P. C.; Wang, N. N.; Bai, Z. C.; Zhang, M. D.; Wu, M. B. Engineered nitrogen doping on VO2(B) enables fast and reversible zinc-ion storage capability for aqueous zinc-ion batteries. J. Energy Chem. 2023, 85, 30–38.

    Article  CAS  Google Scholar 

  18. Wang, X.; Li, Y. G.; Wang, S.; Zhou, F.; Das, P.; Sun, C. L.; Zheng, S. H.; Wu, Z. S. 2D amorphous V2O5/graphene heterostructures for high-safety aqueous Zn-Ion batteries with unprecedented capacity and ultrahigh rate capability. Adv. Energy Mater. 2020, 10, 2000081

    Article  CAS  Google Scholar 

  19. Chen, H. Z.; Qin, H. G.; Chen, L. L.; Wu, J.; Yang, Z. H. V2O5@CNTs as cathode of aqueous zinc ion battery with high rate and high stability. J. Alloys Compd. 2020, 842, 155912

    Article  CAS  Google Scholar 

  20. Zhu, K. F.; Wei, S. Q.; Shou, H. W.; Shen, F. R.; Chen, S. M.; Zhang, P. J.; Wang, C. D.; Cao, Y. Y.; Guo, X.; Luo, M. et al. Defect engineering on V2O3 cathode for long-cycling aqueous zinc metal batteries. Nat. Commun. 2021, 12, 6878.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cui, F. H.; Zhao, J.; Zhang, D. X.; Fang, Y. Z.; Hu, F.; Zhu, K. VO2(B) nanobelts and reduced graphene oxides composites as cathode materials for low-cost rechargeable aqueous zinc ion batteries. Chem. Eng. J. 2020, 390, 124118.

    Article  CAS  Google Scholar 

  22. Liu, Y. Y.; Lv, T. T.; Wang, H.; Guo, X. T.; Liu, C. S.; Pang, H. Nsutite-type VO2 microcrystals as highly durable cathode materials for aqueous zinc-Ion batteries. Chem. Eng. J. 2021, 417, 128408.

    Article  CAS  Google Scholar 

  23. Ding, J. W.; Zheng, H. Y.; Gao, H. G.; Liu, Q. N.; Hu, Z.; Han, L. F.; Wang, S. W.; Wu, S. D.; Fang, S. M.; Chou, S. L. In situ lattice tunnel distortion of vanadium trioxide for enhancing zinc ion storage. Adv. Energy Mater. 2021, 11, 2100973

    Article  CAS  Google Scholar 

  24. Jia, D. D.; Zheng, K.; Song, M.; Tan, H.; Zhang, A. T.; Wang, L. H.; Yue, L. J.; Li, D.; Li, C. W.; Liu, J. Q. VO2·0.2H2O nanocuboids anchored onto graphene sheets as the cathode material for ultrahigh capacity aqueous zinc ion batteries. Nano Res. 2020, 13, 215–224

    Article  CAS  Google Scholar 

  25. Xie, L.; Xiao, W. H.; Shi, X. Y.; Hong, J. Z.; Cai, J. J.; Zhang, K. L.; Shao, L. Y.; Sun, Z. P. VO2·0.26H2O nanobelts@reduced graphene oxides as cathode materials for high-performance aqueous zinc ion batteries. Chem. Commun. 2022, 58, 13807–13810

    Article  CAS  Google Scholar 

  26. Fan, X. K.; Wen, X. Y.; Tang, Y.; Zhou, W.; Xiang, K. X.; Chen, H. β-VO2/carbon nanotubes core-shelled microspheres and their applications for advanced cathode in aqueous zinc ion batteries. Electrochim. Acta 2021, 400, 139425

    Article  CAS  Google Scholar 

  27. Wang, C. Y.; Wang, M. Q.; Liu, L.; Huang, Y. D. 3D porous sponge-inspired electrode for high-energy and high-power zinc-ion batteries. ACS Appl. Energy Mater. 2021, 4, 1833–1839

    Article  CAS  Google Scholar 

  28. Lane, M. K. M.; Rudel, H. E.; Wilson, J. A.; Erythropel, H. C.; Backhaus, A.; Gilcher, E. B.; Ishii, M.; Jean, C. F.; Lin, F.; Muellers, T. D. et al. Green chemistry as just chemistry. Nat. Sustain. 2023, 6, 502–512.

    Article  Google Scholar 

  29. Song, D. M.; Yu, J. D.; Wang, M. M.; Tan, Q. Y.; Liu, K.; Li, J. H. Advancing recycling of spent lithium-ion batteries: From green chemistry to circular economy. Energy Storage Mater. 2023, 61, 102870.

    Article  Google Scholar 

  30. Xue, M. D.; Bai, J.; Wu, M. C.; He, Q. Q.; Zhang, Q. C.; Chen, L. Y. Carbon-assisted anodes and cathodes for zinc ion batteries: From basic science to specific applications, opportunities and challenges. Energy Storage Mater. 2023, 62, 102940.

    Article  Google Scholar 

  31. Gao, S. Z.; Ju, P.; Liu, Z. Q.; Zhai, L.; Liu, W. B.; Zhang, X. Y.; Zhou, Y. L.; Dong, C. F.; Jiang, F. Y.; Sun, J. C. Electrochemically induced phase transition in a nanoflower vanadium tetrasulfide cathode for high-performance zinc-ion batteries. J. Energy Chem. 2022, 69, 356–362.

    Article  CAS  Google Scholar 

  32. Zhu, K. Y.; Wu, T.; Sun, S. C.; Van Den Bergh, W.; Stefik, M.; Huang, K. Synergistic H+/Zn2+ dual ion insertion mechanism in high-capacity and ultra-stable hydrated VO2 cathode for aqueous Zn-ion batteries. Energy Storage Mater. 2020, 29, 60–70.

    Article  Google Scholar 

  33. Li, S. L.; Wei, X. J.; Chen, H. P.; Lai, G. Y.; Wang, X. P.; Zhang, S. J.; Wu, S. X.; Tang, W. T.; Lin, Z. A mixed-valent vanadium oxide cathode with ultrahigh rate capability for aqueous zinc-ion batteries. J. Mater. Chem. A 2021, 9, 22392–22398.

    Article  CAS  Google Scholar 

  34. Yuan, X.; Nie, Y. G.; Zou, T.; Deng, C. L.; Zhang, Y. P.; Wang, Z. Y.; Wang, J. Y.; Zhang, C. L.; Ye, E. J. Polyaniline-intercalated vanadium dioxide nanoflakes for high-performance aqueous zinc ion batteries. ACS Appl. Energy Mater. 2022, 5, 13692–13701.

    Article  CAS  Google Scholar 

  35. Wang, Y. X.; Wang, X.; Zhao, B.; Ren, Z. X.; Yao, Z. S.; Wei, W.; Wang, J.; Qin, J. W.; Xie, J.; Cao, M. H. Molecular-level identification of organic species of ether-based solid-electrolyte interphase in sodium-ion batteries. Nano Energy 2024, 120, 109163.

    Article  CAS  Google Scholar 

  36. Li, Z. J.; Chen, X.; Zhang, R.; Shen, T. Y.; Sun, J. C.; Hu, Z. C.; Li, L.; Yang, L. L.; Yu, H. Y. Advanced cellulose-based materials toward stabilizing zinc anodes. Sci. China Chem., in press, https://doi.org/10.1007/s11426-023-1918-0.

  37. Li, X.; Li, Y.; Zhao, X.; Kang, F. Y.; Dong, L. B. Elucidating the charge storage mechanism of high-performance vertical graphene cathodes for zinc-ion hybrid supercapacitors. Energy Storage Mater. 2022, 53, 505–513.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22209140 and 52202286), Natural Science Foundation of Shandong Province (No. ZR2022QE059), Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai (Yantai) (No. AMGM2023A08), Natural Science Foundation of Zhejiang Province (Nos. LGG23B030011 and LY24B030006), Scientific Research Fund of Zhejiang Provincial Education Department (No. Y202148249), and Basic Research Project of Wenzhou City (No. G20220016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Chen, Yaran Zhao, Lin Li or Jianchao Sun.

Electronic Supplementary Material

12274_2024_6668_MOESM1_ESM.pdf

Electronic Supplementary Material: Boosting the zinc storage performance of vanadium dioxide by integrated morphology engineering and carbon nanotube conductive networks

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Wang, X., Chen, X. et al. Boosting the zinc storage performance of vanadium dioxide by integrated morphology engineering and carbon nanotube conductive networks. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6668-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6668-4

Keywords

Navigation