Skip to main content
Log in

Soft multifunctional neurological electronic skin through intrinsically stretchable synaptic transistor

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Neurological electronic skin (E-skin) can process and transmit information in a distributed manner that achieves effective stimuli perception, holding great promise in neuroprosthetics and soft robotics. Neurological E-skin with multifunctional perception abilities can enable robots to precisely interact with the complex surrounding environment. However, current neurological E-skins that possess tactile, thermal, and visual perception abilities are usually prepared with rigid materials, bringing difficulties in realizing biologically synapse-like softness. Here, we report a soft multifunctional neurological E-skin (SMNE) comprised of a poly(3-hexylthiophene) (P3HT) nanofiber polymer semiconductor-based stretchable synaptic transistor and multiple soft artificial sensory receptors, which is capable of effectively perceiving force, thermal, and light stimuli. The stretchable synaptic transistor can convert electrical signals into transient channel currents analogous to the biological excitatory postsynaptic currents. And it also possesses both short-term and long-term synaptic plasticity that mimics the human memory system. By integrating a stretchable triboelectric nanogenerator, a soft thermoelectric device, and an elastic photodetector as artificial receptors, we further developed an SMNE that enables the robot to make precise actions in response to various surrounding stimuli. Compared with traditional neurological E-skin, our SMNE can maintain the softness and adaptability of biological synapses while perceiving multiple stimuli including force, temperature, and light. This SMNE could promote the advancement of E-skins for intelligent robot applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, M.; Cheng, Y. F.; Yue, Y.; Chen, Y.; Gao, H.; Li, L.; Cai, B.; Liu, W. J.; Wang, Z. Y.; Guo, H. Z. et al. High-performance flexible pressure sensor with a self-healing function for tactile feedback. Adv. Sci. 2022, 9, 2200507

    Article  CAS  Google Scholar 

  2. Feng, T. X.; Ling, D.; Li, C. Y.; Zheng, W. T.; Zhang, S. C.; Li, C.; Emel’yanov, A.; Pozdnyakov, A. S.; Lu, L. J.; Mao, Y. C. Stretchable on-skin touchless screen sensor enabled by ionic hydrogel. Nano Res. 2024, 17, 4462–1470

    Article  Google Scholar 

  3. Qu, X. Y.; Liu, J. Y.; Wang, S. Y.; Shao, J. J.; Wang, Q.; Wang, W. J.; Gan, L.; Zhong, L. P.; Dong, X. C.; Zhao, Y. X. Photothermal regulated multi-perceptive poly(ionic liquids) hydrogel sensor for bioelectronics. Chem. Eng. J. 2023, 453, 139785.

    Article  CAS  Google Scholar 

  4. Liu, D. J.; Zhu, P. C.; Zhang, F. K.; Li, P. S.; Huang, W. H.; Li, C.; Han, N. N.; Mu, S. R.; Zhou, H.; Mao, Y. C. Intrinsically stretchable polymer semiconductor based electronic skin for multiple perceptions of force, temperature, and visible light. Nano Res. 2023, 16, 1196–1204.

    Article  CAS  Google Scholar 

  5. Tang, W.; Sun, Q. J.; Wang, Z. L. Self-powered sensing in wearable electronics-a paradigm shift technology. Chem. Rev. 2023, 123, 12105–12134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Qu, X. Y.; Wang, S. Y.; Zhao, Y.; Huang, H.; Wang, Q.; Shao, J. J.; Wang, W. J.; Dong, X. C. Skin-inspired highly stretchable, tough and adhesive hydrogels for tissue-attached sensor. Chem. Eng. J. 2021, 425, 131523.

    Article  CAS  Google Scholar 

  7. Zhao, W.; Qu, X. Y.; Xu, Q.; Lu, Y.; Yuan, W.; Wang, W. J.; Wang, Q.; Huang, W.; Dong, X. C. Ultrastretchable, self-healable, and wearable epidermal sensors based on ultralong Ag nanowires composited binary-networked hydrogels. Adv. Electron. Mater. 2020, 6, 2000267.

    Article  CAS  Google Scholar 

  8. Liu, F. Y.; Deswal, S.; Christou, A.; Sandamirskaya, Y.; Kaboli, M.; Dahiya, R. Neuro-inspired electronic skin for robots. Sci. Robot. 2022, 7, eabl7344.

    Article  PubMed  Google Scholar 

  9. Wang, W. C.; Jiang, Y. W.; Zhong, D. L.; Zhang, Z. T.; Choudhury, S.; Lai, J. C.; Gong, H. X.; Niu, S. M.; Yan, X. Z.; Zheng, Y. et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 2023, 380, 735–742.

    Article  CAS  PubMed  Google Scholar 

  10. Shim, H.; Jang, S.; Thukral, A.; Jeong, S.; Jo, H.; Kan, B.; Patel, S.; Wei, G. D.; Lan, W.; Kim, H. J. et al. Artificial neuromorphic cognitive skins based on distributed biaxially stretchable elastomeric synaptic transistors. Proc. Natl. Acad. Sci. USA 2022, 119, e2204852119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, F. D.; Zhang, S.; Hu, L.; Fan, J. J.; Lin, C. H.; Guan, P. Y.; Zhou, Y. Z.; Wan, T.; Peng, S. H.; Wang, C. H. et al. Bio-inspired artificial perceptual devices for neuromorphic computing and gesture recognition. Adv. Funct. Mater. 2023, 33, 2300266.

    Article  CAS  Google Scholar 

  12. Wang, X.; Yang, S. T.; Qin, Z. Z.; Hu, B.; Bu, L. J.; Lu, G. H. Enhanced multiwavelength response of flexible synaptic transistors for human sunburned skin simulation and neuromorphic computation. Adv. Mater. 2023, 35, 2303699.

    Article  CAS  Google Scholar 

  13. Wan, C. J.; Cai, P. Q.; Guo, X. T.; Wang, M.; Matsuhisa, N.; Yang, L.; Lv, Z. S.; Luo, Y. F.; Loh, X. J.; Chen, X. D. An artificial sensory neuron with visual-haptic fusion. Nat. Commun. 2020, 11, 4602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Duan, Q. X.; Zhang, T.; Liu, C.; Yuan, R.; Li, G.; Jun Tiw, P.; Yang, K.; Ge, C.; Yang, Y. C.; Huang, R. Artificial multisensory neurons with fused haptic and temperature perception for multimodal insensor computing. Adv. Intell. Syst. 2022, 4, 2200039.

    Article  Google Scholar 

  15. Yu, J. R.; Wang, Y. F.; Qin, S. S.; Gao, G. Y.; Xu, C.; Wang, Z. L.; Sun, Q. J. Bioinspired interactive neuromorphic devices. Mater. Today 2022, 60, 158–182.

    Article  CAS  Google Scholar 

  16. Shan, L. T.; Chen, Q. Z.; Yu, R. J.; Gao, C. S.; Liu, L. J.; Guo, T. L.; Chen, H. P. A sensory memory processing system with multi-wavelength synaptic-polychromatic light emission for multi-modal information recognition. Nat. Commun. 2023, 14, 2648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wan, H. C.; Zhao, J. Y.; Lo, L. W.; Cao, Y. Q.; Sepúlveda, N.; Wang, C. Multimodal artificial neurological sensory-memory system based on flexible carbon nanotube synaptic transistor. ACS Nano 2021, 15, 14587–14597.

    Article  CAS  PubMed  Google Scholar 

  18. Han, J. K.; Yun, S. Y.; Yu, J. M.; Jeon, S. B.; Choi, Y. K. Artificial multisensory neuron with a single transistor for multimodal perception through hybrid visual and thermal sensing. ACS Appl. Mater. Interfaces 2023, 15, 5449–5455.

    Article  CAS  PubMed  Google Scholar 

  19. Subramanian Periyal, S.; Jagadeeswararao, M.; Ng, S. E.; John, R. A.; Mathews, N. Halide perovskite quantum dots photosensitized-amorphous oxide transistors for multimodal synapses. Adv. Mater. Technol. 2020, 5, 2000514.

    Article  CAS  Google Scholar 

  20. Yu, J. R.; Yang, X. X.; Gao, G. Y.; Xiong, Y.; Wang, Y. F.; Han, J.; Chen, Y. H.; Zhang, H.; Sun, Q. J.; Wang, Z. L. Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure. Sci. Adv. 2021, 7, eabd9117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, X.; Ran, Y. X.; Li, X. Q.; Qin, X. S.; Lu, W. L.; Zhu, Y. W.; Lu, G. H. Bio-inspired artificial synaptic transistors: Evolution from innovative basic units to system integration. Mater. Horiz. 2023, 10, 3269–3292.

    Article  CAS  PubMed  Google Scholar 

  22. Shim, H.; Jang, S.; Jang, J. G.; Rao, Z. L.; Hong, J. I.; Sim, K.; Yu, C. J. Fully rubbery synaptic transistors made out of all-organic materials for elastic neurological electronic skin. Nano Res. 2022, 15, 758–764.

    Article  CAS  Google Scholar 

  23. Peng, Y. J.; Gao, L.; Liu, C. J.; Deng, J. Y.; Xie, M.; Bai, L. B.; Wang, G.; Cheng, Y. H.; Huang, W.; Yu, J. S. Stretchable organic electrochemical transistors via three-dimensional porous elastic semiconducting films for artificial synaptic applications. Nano Res. 2023, 16, 10206–10214.

    Article  CAS  Google Scholar 

  24. Ji, J. L.; Wang, Z. X.; Zhang, F.; Wang, B.; Niu, Y.; Jiang, X. N.; Qiao, Z. Y.; Ren, T. L.; Zhang, W. D.; Sang, S. B. et al. Pulse electrochemical synaptic transistor for supersensitive and ultrafast biosensors. InfoMat 2023, 5, e12478.

    Article  CAS  Google Scholar 

  25. Yong, K.; De, S.; Hsieh, E. Y.; Leem, J.; Aluru, N. R.; Nam, S. Kirigami-inspired strain-insensitive sensors based on atomically-thin materials. Mater. Today 2020, 34, 58–65.

    Article  CAS  Google Scholar 

  26. Kim, S. H.; Baek, G. W.; Yoon, J.; Seo, S.; Park, J.; Hahm, D.; Chang, J. H.; Seong, D.; Seo, H.; Oh, S. et al. A bioinspired stretchable sensory-neuromorphic system. Adv. Mater. 2021, 33, 2104690.

    Article  CAS  Google Scholar 

  27. Guo, S. Q.; Wu, K. J.; Li, C. P.; Wang, H.; Sun, Z.; Xi, D. W.; Zhang, S.; Ding, W. P.; Zaghloul, M. E.; Wang, C. N. et al. Integrated contact lens sensor system based on multifunctional ultrathin MoS2 transistors. Matter 2021, 4, 969–985.

    Article  CAS  PubMed  Google Scholar 

  28. Lee, H. C.; Hsieh, E. Y.; Yong, K.; Nam, S. Multiaxially-stretchable kirigami-patterned mesh design for graphene sensor devices. Nano Res. 2020, 13, 1406–1412.

    Article  CAS  Google Scholar 

  29. Zheng, Y.; Zhang, S.; Tok, J. B. H.; Bao, Z. N. Molecular design of stretchable polymer semiconductors: Current progress and future directions. J. Am. Chem. Soc. 2022, 144, 4699–4715.

    Article  CAS  PubMed  Google Scholar 

  30. Tien, H. C.; Li, X.; Liu, C. J.; Li, Y.; He, M. Q.; Lee, W. Y. Photo-patternable stretchable semi-interpenetrating polymer semiconductor network using thiol-ene chemistry for field-effect transistors. Adv. Funct. Mater. 2023, 33, 2211108.

    Article  CAS  Google Scholar 

  31. Hsu, L. C.; Kobayashi, S.; Isono, T.; Chiang, Y. C.; Ree, B. J.; Satoh, T.; Chen, W. C. Highly stretchable semiconducting polymers for field-effect transistors through branched soft-hard-soft type triblock copolymers. Macromolecules 2020, 53, 7496–7510.

    Article  CAS  Google Scholar 

  32. Koo, J. H.; Kang, J.; Lee, S.; Song, J. K.; Choi, J.; Yoon, J.; Park, H. J.; Sunwoo, S. H.; Kim, D. C.; Nam, W. et al. A vacuum-deposited polymer dielectric for wafer-scale stretchable electronics. Nat. Electron. 2023, 6, 137–145.

    Article  CAS  Google Scholar 

  33. Oh, J. Y.; Son, D.; Katsumata, T.; Lee, Y.; Kim, Y.; Lopez, J.; Wu, H. C.; Kang, J.; Park, J.; Gu, X. D. et al. Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array. Sci. Adv. 2019, 5, eaav3097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, X. M.; Li, E. L.; Liu, Y. Q.; Lan, S. Q.; Yang, H. H.; Yan, Y. J.; Shan, L. T.; Lin, Z. X.; Chen, H. P.; Guo, T. L. Stretchable vertical organic transistors and their applications in neurologically systems. Nano Energy 2021, 90, 106497.

    Article  CAS  Google Scholar 

  35. Wang, Y. F.; Sun, Q. J.; Yu, J. R.; Xu, N.; Wei, Y. C.; Cho, J. H.; Wang, Z. L. Boolean logic computing based on neuromorphic transistor. Adv. Funct. Mater. 2023, 33, 2305791.

    Article  CAS  Google Scholar 

  36. Zhu, P. C.; Zhang, B. S.; Wang, H. Y.; Wu, Y. H.; Cao, H. J.; He, L. B.; Li, C. Y.; Luo, X. P.; Li, X.; Mao, Y. C. 3D printed triboelectric nanogenerator as self-powered human-machine interactive sensor for breathing-based language expression. Nano Res. 2022, 15, 7460–7467

    Article  Google Scholar 

  37. Chi, C.; An, M.; Qi, X.; Li, Y.; Zhang, R. H.; Liu, G. Z.; Lin, C. J.; Huang, H.; Dang, H.; Demir, B. et al. Selectively tuning ionic thermopower in all-solid-state flexible polymer composites for thermal sensing. Nat. Commun. 2022, 13, 221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Song, J. K.; Kim, M. S.; Yoo, S.; Koo, J. H.; Kim, D. H. Materials and devices for flexible and stretchable photodetectors and light-emitting diodes. Nano Res. 2021, 14, 2919–2937.

    Article  CAS  Google Scholar 

  39. Chortos, A.; Lim, J.; To, J. W. F.; Vosgueritchian, M.; Dusseault, T. J.; Kim, T. H.; Hwang, S.; Bao, Z. N. Highly stretchable transistors using a microcracked organic semiconductor. Adv. Mater. 2014, 26, 4253–4259.

    Article  CAS  PubMed  Google Scholar 

  40. Wang, W. C.; Wang, S. H.; Rastak, R.; Ochiai, Y.; Niu, S. M.; Jiang, Y. W.; Arunachala, P. K.; Zheng, Y.; Xu, J.; Matsuhisa, N. et al. Strain-insensitive intrinsically stretchable transistors and circuits. Nat. Electron. 2021, 4, 143–150.

    Article  CAS  Google Scholar 

  41. Kim, C. H.; Azimi, M.; Fan, J. X.; Nagarajan, H.; Wang, M. J.; Cicoira, F. All-printed and stretchable organic electrochemical transistors using a hydrogel electrolyte. Nanoscale 2023, 15, 3263–3272.

    Article  CAS  PubMed  Google Scholar 

  42. Zhu, P. C.; Luo, X. P.; Lin, X. R.; Qiu, Z. C.; Chen, R. R.; Wang, X. C.; Wang, Y. L.; Deng, Y.; Mao, Y. C. A self-healable, recyclable, and flexible thermoelectric device for wearable energy harvesting and personal thermal management. Energy Convers. Manage. 2023, 285, 117017.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 62074137), the Science and Technology Research and Development Program Joint Fund of Henan (No. 232301420033), and the China Postdoctoral Science Foundation (Nos. 2021TQ0288 and 2022M712852).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junlei Wang or Yanchao Mao.

Electronic Supplementary Material

Supplementary material, approximately 9.35 MB.

Supplementary material, approximately 3.17 MB.

Supplementary material, approximately 9.81 MB.

12274_2024_6566_MOESM4_ESM.pdf

Electronic Supplementary Material: Soft multifunctional neurological electronic skin through intrinsically stretchable synaptic transistor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, P., Mu, S., Huang, W. et al. Soft multifunctional neurological electronic skin through intrinsically stretchable synaptic transistor. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6566-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6566-8

Keywords

Navigation