Skip to main content
Log in

Multiaxially-stretchable kirigami-patterned mesh design for graphene sensor devices

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In wearable electronics, significant research has gone into imparting stretchability and flexibility to otherwise rigid electronic components while maintaining their electrical properties. Thus far, this has been achieved through various geometric modifications of the rigid conductive components themselves, such as with microcracked, buckled, or planar meander structures. Additionally, strategic placement of these resulting components within the overall devices, such as embedding them at the neutral plane, has been found to further enhance mechanical stability under deformation. However, these strategies are still limited in performance, failing to achieve fully strain-insensitive electrical performance under biaxial stretching, twisting, and mixed strain states. Here, we developed a new platform for wearable, motion artifact-free sensors using a graphene-based multiaxially stretchable kirigami-patterned mesh structure. The normalized resistance change of the electrodes and graphene embedded in the structure is smaller than 0.5% and 0.23% under 180° torsion and 100% biaxial strain, respectively. Moreover, the resistance change is limited to 5% under repeated stretching-releasing cycles from 0% to 100% biaxial strain. In addition, we investigated the deformation mechanisms of the structure with finite element analysis. Based on the simulation results, we derived a dimensionless geometric parameter that enables prediction of stretchability of the structure with high accuracy. Lastly, as a proof-of-concept, we demonstrated a biaxially-stretchable graphene-based sensor array capable of monitoring of temperature and glucose level with minimized motion-artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature2016, 529, 509–514.

    Article  CAS  Google Scholar 

  2. Koh, A.; Kang, D.; Xue, Y. G.; Lee, S.; Pielak, R. M.; Kim, J.; Hwang, T.; Min, S.; Banks, A.; Bastien, P. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med.2016, 8, 366ra165.

    Article  Google Scholar 

  3. Kim, J.; Campbell, A. S.; de Ávila, B. E. F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol.2019, 37, 389–406.

    Article  CAS  Google Scholar 

  4. Lee, H.; Choi, T. K.; Lee, Y. B.; Cho, H. R.; Ghaffari, R.; Wang, L.; Choi, H. J.; Chung, T. D.; Lu, N. S.; Hyeon, T. et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol.2016, 11, 566–572.

    Article  Google Scholar 

  5. Jeong, J. W.; Yeo, W. H.; Akhtar, A.; Norton, J. J. S.; Kwack, Y. J.; Li, S.; Jung, S. Y.; Su, Y. W.; Lee, W.; Xia, J. et al. Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater.2013, 25, 6839–6846.

    Article  CAS  Google Scholar 

  6. Bariya, M.; Nyein, H. Y. Y.; Javey, A. Wearable sweat sensors. Nat. Electron.2018, 1, 160–171.

    Article  Google Scholar 

  7. Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol.2011, 6, 296–301.

    Article  CAS  Google Scholar 

  8. Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science2011, 333, 838–843.

    Article  CAS  Google Scholar 

  9. Kim, D. H.; Song, J. Z.; Choi, W. M.; Kim, H. S.; Kim, R. H.; Liu, Z. J.; Huang, Y. Y.; Hwang, K. C.; Zhang, Y. W.; Rogers, J. A. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. USA2008, 105, 18675–18680.

    Article  CAS  Google Scholar 

  10. Miyamoto, A.; Lee, S.; Cooray, N. F.; Lee, S.; Mori, M.; Matsuhisa, N.; Jin, H.; Yoda, L.; Yokota, T.; Itoh, A. et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol.2017, 12, 907–913.

    Article  CAS  Google Scholar 

  11. Tian, B. Z.; Liu, J.; Dvir, T.; Jin, L. H.; Tsui, J. H.; Qing, Q.; Suo, Z. G.; Langer, R.; Kohane, D. S.; Lieber, C. M. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater.2012, 11, 986–994.

    Article  CAS  Google Scholar 

  12. Hong, G. S.; Fu, T. M.; Qiao, M.; Viveros, R. D.; Yang, X.; Zhou, T.; Lee, J. M.; Park, H. G.; Sanes, J. R.; Lieber, C. M. A method for singleneuron chronic recording from the retina in awake mice. Science2018, 360, 1447–1451.

    Article  CAS  Google Scholar 

  13. Liu, J.; Fu, T. M.; Cheng, Z. G.; Hong, G. S.; Zhou, T.; Jin, L. H.; Duvvuri, M.; Jiang, Z.; Kruskal, P.; Xie, C. et al. Syringe-injectable electronics. Nat. Nanotechnol.2015, 10, 629–636.

    CAS  Google Scholar 

  14. Kim, D. H.; Viventi, J.; Amsden, J. J.; Xiao, J. L.; Vigeland, L.; Kim, Y. S.; Blanco, J. A.; Panilaitis, B.; Frechette, E. S.; Contreras, D. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater.2010, 9, 511–517.

    Article  CAS  Google Scholar 

  15. Fu, T. M.; Hong, G. S.; Viveros, R. D.; Zhou, T.; Lieber, C. M. Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology. Proc. Natl. Acad. Sci. USA2017, 114, E10046–E10055.

    Article  CAS  Google Scholar 

  16. Blees, M. K.; Barnard, A. W.; Rose, P. A.; Roberts, S. P.; McGill, K. L.; Huang, P. Y.; Ruyack, A. R.; Kevek, J. W.; Kobrin, B.; Muller, D. A. et al. Graphene kirigami. Nature2015, 524, 204–207.

    Article  CAS  Google Scholar 

  17. Song, Z. M.; Wang, X.; Lv, C.; An, Y. H.; Liang, M. B.; Ma, T.; He, D.; Zheng, Y. J.; Huang, S. Q.; Yu, H. Y. et al. Kirigami-based stretchable lithium-ion batteries. Sci. Rep.2015, 5, 10988.

    Article  CAS  Google Scholar 

  18. Lamoureux, A.; Lee, K.; Shlian, M.; Forrest, S. R.; Shtein, M. Dynamic kirigami structures for integrated solar tracking. Nat. Commun.2015, 6, 8092.

    Article  Google Scholar 

  19. Won, P.; Park, J. J.; Lee, T.; Ha, I.; Han, S.; Choi, M.; Lee, J.; Hong, S.; Cho, K. J.; Ko, S. H. Stretchable and transparent kirigami conductor of nanowire percolation network for electronic skin applications. Nano Lett.2019, 19, 6087–6096.

    Article  CAS  Google Scholar 

  20. Tang, Y. C.; Lin, G. J.; Yang, S.; Yi, Y. K.; Kamien, R. D.; Yin, J. Programmable kiri-kirigami metamaterials. Adv. Mater.2017, 29, 1604262.

    Article  Google Scholar 

  21. Shyu, T. C.; Damasceno, P. F.; Dodd, P. M.; Lamoureux, A.; Xu, L. Z.; Shlian, M.; Shtein, M.; Glotzer, S. C.; Kotov, N. A. A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nat. Mater.2015, 14, 785–789.

    Article  CAS  Google Scholar 

  22. Morikawa, Y.; Yamagiwa, S.; Sawahata, H.; Numano, R.; Koida, K.; Ishida, M.; Kawano, T. Ultrastretchable kirigami bioprobes. Adv. Healthc. Mater.2018, 7, 1701100.

    Article  Google Scholar 

  23. Xu, R. X.; Zverev, A.; Hung, A.; Shen, C. W.; Irie, L.; Ding, G.; Whitmeyer, M.; Ren, L. J.; Griffin, B.; Melcher, J. et al. Kirigami-inspired, highly stretchable micro-supercapacitor patches fabricated by laser conversion and cutting. Microsyst. Nanoeng.2018, 4, 36.

    Article  Google Scholar 

  24. Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature2012, 490, 192–200.

    Article  CAS  Google Scholar 

  25. Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun.2014, 5, 5678.

    Article  CAS  Google Scholar 

  26. Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science2008, 321, 385–388.

    Article  CAS  Google Scholar 

  27. Chung, C.; Kim, Y. K.; Shin, D.; Ryoo, S. R.; Hong, B. H.; Min, D. H. Biomedical applications of graphene and graphene oxide. Acc. Chem. Res.2013, 46, 2211–2224.

    Article  CAS  Google Scholar 

  28. Snapp, P.; Kang, P.; Leem, J.; Nam, S. Colloidal photonic crystal strain sensor integrated with deformable graphene phototransducer. Adv. Funct. Mater.2019, 29, 1902216.

    Article  Google Scholar 

  29. Kang, P.; Wang, M. C.; Knapp, P. M.; Nam, S. Crumpled graphene photodetector with enhanced, strain-tunable, and wavelength-selective photoresponsivity. Adv. Mater.2016, 28, 4639–4645.

    Article  CAS  Google Scholar 

  30. Yong, K.; De, S.; Hsieh, E. Y.; Leem, J.; Aluru, N. R.; Nam, S. W. Kirigami-inspired strain-insensitive sensors based on atomically-thin materials. Mater. Today, in press, DOI: https://doi.org/10.1016/j.mattod.2019.08.013.

    Article  CAS  Google Scholar 

  31. Isobe, M.; Okumura, K. Initial rigid response and softening transition of highly stretchable kirigami sheet materials. Sci. Rep.2016, 6, 24758.

    Article  CAS  Google Scholar 

  32. Lu, N. S.; Wang, X.; Suo, Z. G.; Vlassak, J. Metal films on polymer substrates stretched beyond 50%. Appl. Phys. Lett.2007, 91, 221909.

    Article  Google Scholar 

  33. Matsuhisa, N.; Jiang, Y.; Liu, Z. Y.; Chen, G.; Wan, C. J.; Kim, Y.; Kang, J.; Tran, H.; Wu, H. C.; You, I. et al. High-transconductance stretchable transistors achieved by controlled gold microcrack morphology. Adv. Electron. Mater.2019, 5, 1900347.

    Article  Google Scholar 

  34. Cao, W. Z.; Görrn, P.; Wagner, S. Modeling the electrical resistance of gold film conductors on uniaxially stretched elastomeric substrates. Appl. Phys. Lett.2011, 98, 212112.

    Article  Google Scholar 

  35. Lee, S. K.; Kim, B. J.; Jang, H.; Yoon, S. C.; Lee, C.; Hong, B. H.; Rogers, J. A.; Cho, J. H.; Ahn, J. H. Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett.2011, 11, 4642–4646.

    Article  CAS  Google Scholar 

  36. Heller, A.; Feldman, B. Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev.2008, 108, 2482–2505.

    Article  CAS  Google Scholar 

  37. Huang, Y. X.; Dong, X. C.; Shi, Y. M.; Li, C. M.; Li, L. J.; Chen, P. Nanoelectronic biosensors based on CVD grown graphene. Nanoscale2010, 2, 1485–1488.

    Article  CAS  Google Scholar 

  38. Zhang, M.; Liao, C. Z.; Mak, C. H.; You, P.; Mak, C. L.; Yan, F. Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors. Sci. Rep.2015, 5, 8311.

    Article  CAS  Google Scholar 

  39. Lee, H.; Song, C.; Hong, Y. S.; Kim, M. S.; Cho, H. R.; Kang, T.; Shin, K.; Choi, S. H.; Hyeon, T.; Kim, D. H. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv.2017, 3, e1601314.

    Article  Google Scholar 

Download references

Acknowledgements

S. N. gratefully acknowledges support from the AFOSR (Nos. FA2386-17-1-4071 and FA9550-18-1-0405), KRICT (No. GO!KRICT KK1963-807), NSF (Nos. ECCS-1935775, CMMI-1554019 and MRSEC DMR-1720633), NASA ECF (No. NNX16AR56G), ONR YIP (No. N00014-17-1-2830) and JITRI. Experiments were carried out in part in the Materials Research Laboratory Central Research Facilities, and Micro and Nano Technology Laboratory at the University of Illinois at Urbana-Champaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SungWoo Nam.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.C., Hsieh, E.Y., Yong, K. et al. Multiaxially-stretchable kirigami-patterned mesh design for graphene sensor devices. Nano Res. 13, 1406–1412 (2020). https://doi.org/10.1007/s12274-020-2662-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2662-7

Keywords

Navigation