Skip to main content
Log in

Acidic electroreduction CO2 to formic acid via interfacial modification of Bi nanoparticles at industrial-level current

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrocatalytic CO2 reduction reaction (CO2RR) in acidic media is a promising approach to overcome the unavoidable formation of carbonates in alkaline or neutral electrolytes. However, the proton-rich environment near the catalyst surface favors hydrogen evolution reactions (HER), leading to lower energy efficiency of the desired products, especially in industrial-level current densities. Here, quaternary ammonium cationic surfactant (cetyltrimethylammonium bromide (CTAB)) was introduced into acidic electrolyte to modulate the interfacial microenvironment, which greatly enhanced CO2 electroreduction to formic acid (HCOOH) at the Bi/C nanoparticles electrode. Using a Bi/C nanoparticles electrode with CTAB added, constant production of formic acid was enabled with a cathodic energy efficiency of > 40% and maximum FEHCOOH (FE = Faradaic efficiency) of 86.2% at −400 mA·cm−2 over 24 h. Combined with in-situ attenuated total reflection Fourier transform infrared spectroscopy, the concentration of *OCHO intermediates significantly increased after CTAB modification, confirming that the hydrophobic interface microenvironment formed by dynamic adsorption of positively charged long alkyl chains on Bi/C nanoparticle electrodes inhibited HER and improved the selectivity of CO2RR to HCOOH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, H. L.; Jiao, Y. F.; Wu, B.; Wang, D.; Hu, Y. Q.; Liang, F.; Shen, C.; Knauer, A.; Ren, D.; Wang, H. G. et al. Exfoliated 2D layered and nonlayered metal phosphorous trichalcogenides nanosheets as promising electrocatalysts for CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202217253.

    Article  CAS  Google Scholar 

  2. Zhai, J. R.; Hu, Y.; Su, M. F.; Shi, J. W.; Li, H.; Qin, Y. Z.; Gao, F.; Lu, Q. Y. One-step phase separation for core-shell carbon@indium oxide@bismuth microspheres with enhanced activity for CO2 electroreduction to formate. Small 2023, 19, 2206440.

    Article  CAS  Google Scholar 

  3. Takaoka, Y.; Song, J. T.; Takagaki, A.; Watanabe, M.; Ishihara, T. Bi/UiO-66-derived electrocatalysts for high CO2-to-formate conversion rate. Appl. Catal. B: Environ. 2023, 326, 122400.

    Article  CAS  Google Scholar 

  4. Shi, Y. J.; Wang, Y. J.; Yu, J. Y.; Chen, Y. K.; Fang, C. Q.; Jiang, D.; Zhang, Q. H.; Gu, L.; Yu, X. W.; Li, X. et al. Superscalar phase boundaries derived multiple active sites in SnO2/Cu6Sn5/CuO for tandem electroreduction of CO2 to formic acid. Adv. Energy Mater. 2023, 13, 2203506.

    Article  CAS  Google Scholar 

  5. Liu, H. Z.; Chen, Y. F.; Lee, J.; Gu, S.; Li, W. Z. Ammoniamediated CO2 capture and direct electroreduction to formate. ACS Energy Lett. 2022, 7, 4483–4489.

    Article  CAS  Google Scholar 

  6. Sheng, Y. W.; Guo, Y. Y.; Yu, H. J.; Deng, K.; Wang, Z. Q.; Li, X. N.; Wang, H. J.; Wang, L.; Xu, Y. Engineering under-coordinated active sites with tailored chemical microenvironments over mosaic bismuth nanosheets for selective CO2 electroreduction to formate. Small 2023, 19, 2207305.

    Article  CAS  Google Scholar 

  7. Ma, X. T.; Zhang, Y. G.; Fan, T. T.; Wei, D. Y.; Huang, Z. Y.; Zhang, Z. H.; Zhang, Z.; Dong, Y. Y.; Hong, Q. M.; Chen, Z. et al. Facet dopant regulation of Cu2O boosts electrocatalytic CO2 reduction to formate. Adv. Funct. Mater. 2023, 33, 2213145.

    Article  CAS  Google Scholar 

  8. Ma, J. J.; Yan, J.; Xu, J. J.; Ni, J. Q.; Zhang, H. J.; Lu, L. L. Dynamic ion exchange engineering BiOI-derived Bi2O2CO3 to promote CO2 electroreduction for efficient formate production. Chem. Eng. J. 2023, 455, 140926.

    Article  CAS  Google Scholar 

  9. Liu, H.; Su, Y. Q.; Liu, Z. H.; Chuai, H.; Zhang, S.; Ma, X. B. Tailoring microenvironment for enhanced electrochemical CO2 reduction on ultrathin tin oxide derived nanosheets. Nano Energy 2023, 105, 108031.

    Article  CAS  Google Scholar 

  10. Lin, C.; Liu, Y.; Kong, X. D.; Geng, Z. G.; Zeng, J. Electrodeposited highly-oriented bismuth microparticles for efficient CO2 electroreduction into formate. Nano Res. 2022, 15, 10078–10083.

    Article  CAS  Google Scholar 

  11. Wang, H. M.; Fu, Y. Q.; Chen, Z. N.; Zhuang, W.; Cao, M. N.; Cao, R. Tunable CO2 enrichment on functionalized Au surface for enhanced CO2 electroreduction. Nano Res. 2023, 16, 4723–4728.

    Article  CAS  Google Scholar 

  12. Ni, J. J.; Cheng, Q. Y.; Liu, S. S.; Wang, M. F.; He, Y. Z.; Qian, T.; Yan, C. L.; Lu, J. M. Deciphering electrolyte selection for electrochemical reduction of carbon dioxide and nitrogen to high-value-added chemicals. Adv. Funct. Mater. 2023, 33, 2212483.

    Article  CAS  Google Scholar 

  13. Deng, B. W.; Huang, M.; Zhao, X. L.; Mou, S. Y.; Dong, F. Interfacial electrolyte effects on electrocatalytic CO2 reduction. ACS Catal. 2022, 12, 331–362.

    Article  CAS  Google Scholar 

  14. Zhao, Y.; Hao, L.; Ozden, A.; Liu, S. J.; Miao, R. K.; Ou, P. F.; Alkayyali, T.; Zhang, S. Z.; Ning, J.; Liang, Y. X. et al. Conversion of CO2 to multicarbon products in strong acid by controlling the catalyst microenvironment. Nat. Synth. 2023, 2, 403–412.

    Article  Google Scholar 

  15. Wang, J. L.; Huang, Y. C.; Wang, Y. Q.; Deng, H.; Shi, Y. C.; Wei, D. X.; Li, M. T.; Dong, C. L.; Jin, H.; Mao, S. S. et al. Atomically dispersed metal-nitrogen-carbon catalysts with d-orbital electronic configuration-dependent selectivity for electrochemical CO2-to-CO reduction. ACS Catal. 2023, 13, 2374–2385.

    Article  CAS  Google Scholar 

  16. Han, Z. S.; Han, D. L.; Chen, Z.; Gao, J. C.; Jiang, G. Y.; Wang, X. Y.; Lyu, S.; Guo, Y.; Geng, C. N.; Yin, L. C. et al. Steering surface reconstruction of copper with electrolyte additives for CO2 electroreduction. Nat. Commun. 2022, 13, 3158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, L. B.; Feng, J. Q.; Liu, S. J.; Tan, X. X.; Wu, L. M.; Jia, S. H.; Xu, L.; Ma, X. D.; Song, X. N.; Ma, J. et al. Atomically dispersed Ni-Cu catalysts for pH-universal CO2 electroreduction. Adv. Mater. 2023, 35, 2209590.

    Article  CAS  Google Scholar 

  18. Nie, W. X.; Heim, G. P.; Watkins, N. B.; Agapie, T.; Peters, J. C. Organic additive-derived films on Cu electrodes promote electrochemical CO2 reduction to C2+ products under strongly acidic conditions. Angew. Chem., Int. Ed. 2023, 62, e202216102.

    Article  CAS  Google Scholar 

  19. Zhang, J.; Pan, B. B.; Li, Y. G. Modulating electrochemical CO2 reduction at interfaces. Sci. Bull. 2022, 67, 1844–1848.

    Article  CAS  Google Scholar 

  20. Li, H. F.; Li, H. B.; Wei, P. F.; Wang, Y.; Zang, Y. P.; Gao, D. F.; Wang, G. X.; Bao, X. H. Tailoring acidic microenvironments for carbon-efficient CO2 electrolysis over Ni-N-C catalyst in a membrane electrode assembly electrolyzer. Energy Environ. Sci. 2023, 16, 1502–1510.

    Article  CAS  Google Scholar 

  21. Xu, Z. Y.; Sun, M. Z.; Zhang, Z. S.; Xie, Y.; Hou, H. S.; Ji, X. B.; Liu, T. F.; Huang, B. L.; Wang, Y. Steering the selectivity of electrochemical CO2 reduction in acidic media. ChemCatChem 2022, 14, e202200052.

    Article  CAS  Google Scholar 

  22. Xie, Y.; Ou, P. F.; Wang, X.; Xu, Z. Y.; Li, Y. C.; Wang, Z. Y.; Huang, J. E.; Wicks, J.; McCallum, C.; Wang, N. et al. High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat. Catal. 2022, 5, 564–570.

    Article  CAS  Google Scholar 

  23. Sheng, X. D.; Ge, W. X.; Jiang, H. L.; Li, C. Z. Engineering Ni-N-C catalyst microenvironment enabling CO2 electroreduction with nearly 100% CO selectivity in acid. Adv. Mater. 2022, 34, 2201295.

    Article  CAS  Google Scholar 

  24. Liu, Z. K.; Yan, T.; Shi, H.; Pan, H.; Cheng, Y. Y.; Kang, P. Acidic electrocatalytic CO2 reduction using space-confined nanoreactors. ACS Appl. Mater. Interfaces 2022, 14, 7900–7908.

    Article  CAS  PubMed  Google Scholar 

  25. Capdevila-Cortada, M. Acid solution. Nat. Catal. 2022, 5, 1073–1073.

    Article  Google Scholar 

  26. Jiang, Z.; Zhang, Z. S.; Li, H.; Tang, Y. R.; Yuan, Y. B.; Zao, J.; Zheng, H. Z.; Liang, Y. Y. Molecular catalyst with near 100% selectivity for CO2 reduction in acidic electrolytes. Adv. Energy Mater. 2023, 13, 2203603.

    Article  CAS  Google Scholar 

  27. Fan, J.; Pan, B. B.; Wu, J. L.; Shao, C. C.; Wen, Z. Y.; Yan, Y. C.; Wang, Y. H.; Li, Y. G. Immobilized tetraalkylammonium cations enable metal-free CO2 electroreduction in acid and pure water. Angew. Chem., Int. Ed. 2024, 63, e202317828.

    Article  CAS  Google Scholar 

  28. Sheng, B. B.; Cao, D. F.; Shou, H. W.; Xu, W. J.; Wu, C. Q.; Zhang, P. J.; Liu, C. J.; Xia, Y. J.; Wu, X. J.; Chu, S. Q. et al. Anomalous Ru dissolution enabling efficient integrated CO2 electroreduction in strong acid. Chem. Eng. J. 2023, 454, 140245.

    Article  CAS  Google Scholar 

  29. Qiao, Y.; Lai, W. C.; Huang, K.; Yu, T. T.; Wang, Q. Y.; Gao, L.; Yang, Z. L.; Ma, Z. S.; Sun, T. L.; Liu, M. et al. Engineering the local microenvironment over Bi nanosheets for highly selective electrocatalytic conversion of CO2 to HCOOH in strong acid. ACS Catal. 2022, 12, 2357–2364.

    Article  CAS  Google Scholar 

  30. Pan, B. B.; Wang, Y. H.; Li, Y. G. Understanding and leveraging the effect of cations in the electrical double layer for electrochemical CO2 reduction. Chem Catal. 2022, 2, 1267–1276.

    Article  CAS  Google Scholar 

  31. Bondue, C. J.; Graf, M.; Goyal, A.; Koper, M. T. M. Suppression of hydrogen evolution in acidic electrolytes by electrochemical CO2 reduction. J. Am. Chem. Soc. 2021, 143, 279–285.

    Article  CAS  PubMed  Google Scholar 

  32. Qin, H. G.; Li, F. Z.; Du, Y. F.; Yang, L. F.; Wang, H.; Bai, Y. Y.; Lin, M.; Gu, J. Quantitative understanding of cation effects on the electrochemical reduction of CO2 and H+ in acidic solution. ACS Catal. 2023, 13, 916–926.

    Article  CAS  Google Scholar 

  33. Siritanaratkul, B.; Forster, M.; Greenwell, F.; Sharma, P. K.; Yu, E. H.; Cowan, A. J. Zero-gap bipolar membrane electrolyzer for carbon dioxide reduction using acid-tolerant molecular electrocatalysts. J. Am. Chem. Soc. 2022, 144, 7551–7556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, L.; Liu, Z. Y.; Yu, X. H.; Zhong, M. Achieving high single-pass carbon conversion efficiencies in durable CO2 electroreduction in strong acids via electrode structure engineering. Angew. Chem., Int. Ed. 2023, 62, e202300226.

    Article  CAS  Google Scholar 

  35. Li, Z. Q.; Sun, B.; Xiao, D. F.; Wang, Z. Y.; Liu, Y. Y.; Zheng, Z. K.; Wang, P.; Dai, Y.; Cheng, H. F.; Huang, B. B. Electron-rich Bi nanosheets promotes CO2 formation for high-performance and pH-universal electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202217569.

    Article  CAS  Google Scholar 

  36. Huang, J. E.; Li, F. W.; Ozden, A.; Rasouli, A. S.; De Arquer, F. P. G.; Liu, S. J.; Zhang, S. Z.; Luo, M. C.; Wang, X.; Lum, Y. et al. CO2 electrolysis to multicarbon products in strong acid. Science 2021, 372, 1074–1078.

    Article  CAS  PubMed  Google Scholar 

  37. Ruan, S. H.; Zhang, B.; Zou, J. H.; Zhong, W. F.; He, X. Y.; Lu, J. H.; Zhang, Q. H.; Wang, Y.; Xie, S. J. Bismuth nanosheets with rich grain boundaries for efficient electroreduction of CO2 to formate under high pressures. Chin. J. Catal. 2022, 43, 3161–3169.

    Article  CAS  Google Scholar 

  38. Yan, T.; Pan, H.; Liu, Z. K.; Kang, P. Phase-inversion induced 3D electrode for direct acidic electroreduction CO2 to formic acid. Small 2023, 19, 2207650.

    Article  CAS  Google Scholar 

  39. Qin, H. G.; Du, Y. F.; Bai, Y. Y.; Li, F. Z.; Yue, X.; Wang, H.; Peng, J. Z.; Gu, J. Surface- immobilized cross-linked cationic polyelectrolyte enables CO2 reduction with metal cation-free acidic electrolyte. Nat. Commun. 2023, 14, 5640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin, L.; He, X. Y.; Zhang, X. G.; Ma, W. C.; Zhang, B.; Wei, D. Y.; Xie, S. J.; Zhang, Q. H.; Yi, X. D.; Wang, Y. A nanocomposite of bismuth clusters and Bi2O2CO3 sheets for highly efficient electrocatalytic reduction of CO2 to formate. Angew. Chem., Int. Ed. 2023, 62, e202214959.

    Article  CAS  Google Scholar 

  41. Yang, J.; Wang, X. L.; Qu, Y. T.; Wang, X.; Huo, H.; Fan, Q. K.; Wang, J.; Yang, L. M.; Wu, Y. E. Bi-based metal-organic framework derived leafy bismuth nanosheets for carbon dioxide electroreduction. Adv. Energy Mater. 2020, 10, 2001709.

    Article  CAS  Google Scholar 

  42. Hao, L.; Kang, L.; Huang, H. W.; Ye, L. Q.; Han, K. L.; Yang, S. Q.; Yu, H. J.; Batmunkh, M.; Zhang, Y. H.; Ma, T. Y. Surface-halogenation-induced atomic-site activation and local charge separation for superb CO2 photoreduction. Adv. Mater. 2019, 31, 1900546.

    Article  Google Scholar 

  43. Deng, P. L.; Yang, F.; Wang, Z. T.; Chen, S. H.; Zhou, Y. Z.; Zaman, S.; Xia, B. Y. Metal- organic frameworks-derived carbon nanorods encapsulating bismuth oxides for rapid and selective CO2 electroreduction to formate. Angew. Chem., Int. Ed. 2020, 59, 10807–10813.

    Article  CAS  Google Scholar 

  44. He, S. S.; Ni, F. L.; Ji, Y. J.; Wang, L.; Wen, Y. Z.; Bai, H. P.; Liu, G. J.; Zhang, Y.; Li, Y. Y.; Zhang, B. et al. The p-orbital delocalization of main-group metal boosting CO2 electroreduction. Angew. Chem., Int. Ed. 2018, 57, 16114–16119.

    Article  CAS  Google Scholar 

  45. Sun, Z. H.; Liu, Y.; Ye, W. B.; Zhang, J. Y.; Wang, Y. Y.; Lin, Y.; Hou, L. R.; Wang, M. S.; Yuan, C. Z. Unveiling intrinsic potassium storage behaviors of hierarchical nano Bi@N-doped carbon nanocages framework via in situ characterizations. Angew. Chem., Int. Ed. 2020, 60, 7180–7187.

    Article  Google Scholar 

  46. Wu, D.; Wang, X. W.; Fu, X. Z.; Luo, J. L. Ultrasmall Bi nanoparticles confined in carbon nanosheets as highly active and durable catalysts for CO2 electroreduction. Appl. Catal. B: Environ. 2020, 284, 119723.

    Article  Google Scholar 

  47. Shan, L. W.; Bi, J. J.; Liu, Y. T. Roles of BiOCl(001) in face-to-faced BiOI(010)/BiOCl(001) heterojunction. J. Nanopart. Res. 2008, 20, 170.

    Article  Google Scholar 

  48. Ge, W. X.; Chen, Y. X.; Fan, Y.; Zhu, Y. H.; Liu, H. L.; Song, L.; Liu, Z.; Lian, C.; Jiang, H. L.; Li, C. Z. Dynamically formed surfactant assembly at the electrified electrode-electrolyte interface boosting CO2 electroreduction. J. Am. Chem. Soc. 2022, 144, 6613–6622.

    Article  CAS  PubMed  Google Scholar 

  49. Shen, H. F.; Jin, H. Y.; Li, H. B.; Wang, H. R.; Duan, J. J.; Jiao, Y.; Qiao, S. Z. Acidic CO2-to-HCOOH electrolysis with industrial-level current on phase engineered tin sulfide. Nat. Commun. 2023, 14, 2843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zheng, M.; Wang, P. T.; Zhi, X.; Yang, K.; Jiao, Y.; Duan, J. J.; Zheng, Y.; Qiao, S. Z. Electrocatalytic CO2-to-C2+ with ampere-level current on heteroatom-engineered copper via tuning *CO intermediate coverage. J. Am. Chem. Soc. 2022, 144, 14936–14944.

    Article  CAS  PubMed  Google Scholar 

  51. Wang, P. T.; Yang, H.; Tang, C.; Wu, Y.; Zheng, Y.; Cheng, T.; Davey, K.; Huang, X. Q.; Qiao, S. Z. Boosting electrocatalytic CO2− to-ethanol production via asymmetric C-C coupling. Nat. Commun. 2022, 13, 3754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shen, H. D.; Wang, T. S.; Jiang, H.; Zhao, P.; Chen, Z. W.; Feng, Y. Z.; Cao, Y. L.; Guo, Y.; Zhang, Q. Y.; Zhang, H. P. Theoretical calculation guided design of single atom-alloyed bismuth catalysts for ampere-level CO2 electrolysis to formate. Appl. Catal. B Environ. 2023, 339, 123140.

    Article  CAS  Google Scholar 

  53. Pan, B. B.; Fan, J.; Zhang, J.; Luo, Y. Q.; Shen, C.; Wang, C. Q.; Wang, Y. H.; Li, Y. G. Close to 90% single-pass conversion efficiency for CO2 electroreduction in an acid-fed membrane electrode assembly. ACS Energy Lett. 2022, 7, 4224–4231.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52072197, 22302108, 21971132, and 52272222), Youth Innovation and Technology Foundation of Shandong Higher Education Institutions, China (No. 2023KJ313), Outstanding Youth Foundation of Shandong Province, China (No. ZR2019JQ14), Major Scientific and Technological Innovation Project (No. 2019JZZY020405), Major Basic Research Program of Natural Science Foundation of Shandong Province (No. ZR2020ZD09), Natural Science Foundation of Qingdao (No. 23-2-1-12-zyyd-jch), and Qingdao Postdoctoral Researcher Applied Research Project (No. QDBSH20220202043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongdong Li or Lei Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, T., Li, H., Wang, Z. et al. Acidic electroreduction CO2 to formic acid via interfacial modification of Bi nanoparticles at industrial-level current. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6536-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6536-2

Keywords

Navigation