Skip to main content
Log in

Nickel-iron in the second coordination shell boost single-atomic-site iridium catalysts for high-performance urea electrooxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Single-atom catalysts (SACs) with high catalytic activity as well as great stability are demonstrating great promotion in electrocatalytic energy conversion, which is also a big challenge to achieve. Herein, we proposed a facile synthetic strategy to construct nickel-iron bimetallic hydroxide nanoribbon stabilized single-atom iridium catalysts (Ir-NiFe-OH), where the nickel-iron hydroxide nanoribbon not only can serve as good electronic conductor, but also can well stabilize and fully expose single-atom sites. Adopted as catalyst for urea oxidation reaction (UOR), it exhibited excellent UOR performance that it only needed a low operated potential of 1.38 V to achieve the current density of 100 mA·cm−2. In-situ Fourier transform infrared spectroscopy, X-ray absorption spectrum, and density functional theory calculations proved that Ir species are active centers and the existence of both Ni and Fe in the local structure of Ir atom can optimize the d-band center of Ir species, promoting the adsorption of intermediates and desorption of products for UOR. The hydrogen evolution reaction (HER)/UOR electrocatalytic cell demanded voltages of 1.46 and 1.50 V to achieve 50 and 100 mA·cm−2, respectively, which demonstrated a higher activity and better stability than those of conventional catalysts. This work opens a new avenue to develop catalysts for UORs with boosted activity and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geng, S. K.; Zheng, Y.; Li, S. Q.; Su, H.; Zhao, X.; Hu, J.; Shu, H. B.; Jaroniec, M.; Chen, P.; Liu, Q. H. et al. Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. Nat. Energy 2021, 6, 904–912.

    Article  CAS  Google Scholar 

  2. Zheng, M.; Wang, J. Regulating the oxygen affinity of single atom catalysts by dual-atom design for enhanced oxygen reduction reaction activity. Chem. Res. Chin. Univ. 2022, 38, 1275–1281.

    Article  CAS  Google Scholar 

  3. Gao, Y.; Liu, B. Z.; Wang, D. S. Microenvironment engineering of single/dual-atom catalysts for electrocatalytic application. Adv. Mater. 2023, 35, 2209654.

    Article  CAS  Google Scholar 

  4. Wang, T. H.; Fu, X. Z.; Wang, S. Y. Etching oxide overlayers of NiFe phosphide to facilitate surface reconstruction for oxygen evolution reaction. Green Energy Environ. 2022, 7, 365–371.

    Article  CAS  Google Scholar 

  5. Han, A. L.; Sun, W. M.; Wan, X.; Cai, D. D.; Wang, X. J.; Li, F.; Shui, J. L.; Wang, D. S. Construction of Co4 atomic clusters to enable Fe−N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem. 2023, 135, e202303185

    Article  Google Scholar 

  6. Qi, Y. X.; Li, T. T.; Hu, Y. J.; Xiang, J. H.; Shao, W. Q.; Chen, W. H.; Mu, X. Q.; Liu, S. L.; Chen, C. Y.; Yu, M. et al. Single-atom Fe embedded Co3S4 for efficient electrocatalytic oxygen evolution reaction. Chem. Res. Chin. Univ. 2022, 38, 1282–1286

    Article  CAS  Google Scholar 

  7. Zheng, X. B.; Yang, J. R.; Li, P.; Jiang, Z. L.; Zhu, P.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Sun, W. P.; Dou, S. X. et al. Dual-atom support boosts nickel-catalyzed urea electrooxidation. Angew. Chem., Int. Ed. 2023, 62, e202217449.

    Article  CAS  Google Scholar 

  8. Du, X. Q.; Ding, Y. Y.; Zhang, X. S. MOF-derived Zn−Co−Ni sulfides with hollow nanosword arrays for high-efficiency overall water and urea electrolysis. Green Energy Environ. 2023, 8, 798–811.

    Article  CAS  Google Scholar 

  9. Chen, N.; Du, Y. X.; Zhang, G.; Lu, W. T.; Cao, F. F. Amorphous nickel sulfoselenide for efficient electrochemical urea-assisted hydrogen production in alkaline media. Nano Energy 2021, 81, 105605.

    Article  CAS  Google Scholar 

  10. Kumar, A.; Liu, X. H.; Lee, J.; Debnath, B.; Jadhav, A. R.; Shao, X. D.; Bui, V. Q.; Hwang, Y.; Liu, Y.; Kim, M. G. et al. Discovering ultrahigh loading of single-metal-atoms via surface tensile-strain for unprecedented urea electrolysis. Energy Environ. Sci. 2021, 14, 6494–6505.

    Article  CAS  Google Scholar 

  11. Yang, L. L.; He, R.; Wang, X.; Yang, T. T.; Zhang, T.; Zuo, Y.; Lu, X.; Liang, Z. F.; Li, J. S.; Arbiol, J. et al. Self-supported NiO/CuO electrodes to boost urea oxidation in direct urea fuel cells. Nano Energy 2023, 115, 108714.

    Article  CAS  Google Scholar 

  12. Sayed, E. T.; Eisa, T.; Mohamed, H. O.; Abdelkareem, M. A.; Allagui, A.; Alawadhi, H.; Chae, K. J. Direct urea fuel cells: Challenges and opportunities. J. Power Sources 2019, 417, 159–175.

    Article  CAS  Google Scholar 

  13. Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

    Article  CAS  Google Scholar 

  14. Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-023-5700-4.

  15. Wang, L. G.; Liu, H.; Zhuang, J. H.; Wang, D. S. Small-scale big science: From nano- to atomically dispersed catalytic materials. Small Sci. 2022, 2, 2200036.

    Article  CAS  Google Scholar 

  16. Wang, Q. S.; Zheng, X. B.; Wu, J. B.; Wang, Y.; Wang, D. S.; Li, Y. D. Recent progress in thermal conversion of CO2 via single-atom site catalysis. Small Struct. 2022, 3, 2200059.

    Article  CAS  Google Scholar 

  17. Li, R. Z.; Zhao, J.; Liu, B. Z.; Wang, D. S. Atomic distance engineering in metal catalysts to regulate catalytic performance. Adv. Mater., in press, DOI: https://doi.org/10.1002/adma.202308653.

  18. Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

    Article  CAS  Google Scholar 

  19. Shen, J.; Wang, D. S. How to select heterogeneous CO2 reduction electrocatalyst. Nano Res. Energy 2024, 3, e9120096.

    Article  Google Scholar 

  20. Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    Article  CAS  Google Scholar 

  21. Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

    Article  CAS  Google Scholar 

  22. Hunter, B. M.; Hiernger, W.; Winkler, J. R.; Gray, H. B.; Müller, A. M. Effect of interlayer anions on [NiFe]−LDH nanosheet water oxidation activity. Energy Environ. Sci. 2016, 9, 1734–1743.

    Article  CAS  Google Scholar 

  23. Yin, H. J.; Tang, Z. Y. Ultrathin two-dimensional layered metal hydroxides: An emerging platform for advanced catalysis, energy conversion and storage. Chem. Soc. Rev. 2016, 45, 4873–4891.

    Article  CAS  PubMed  Google Scholar 

  24. Fu, Y. Y.; Sheng, Q. L.; Zheng, J. B. Au nanoparticles anchored on Ni(OH)2 nanowires with multiple cavities for selective electrochemical detection of dopamine. Anal. Methods 2017, 9, 2812–2820.

    Article  CAS  Google Scholar 

  25. Dong, X. L.; Guo, Z. Y.; Song, Y. F.; Hou, M. Y.; Wang, J. Q.; Wang, Y. G.; Xia, Y. Y. Flexible and wire-shaped microsupercapacitor based on Ni(OH)2-nanowire and ordered mesoporous carbon electrodes. Adv. Funct. Mater. 2014, 24, 3405–3412.

    Article  CAS  Google Scholar 

  26. Chen, J. T.; Ci, S. Q.; Wang, G. X.; Senthilkumar, N.; Zhang, M. T.; Xu, Q. H.; Wen, Z. H. Ni(OH)2 nanosheet electrocatalyst toward alkaline urea electrolysis for energy-saving acidic hydrogen production. ChemElectroChem 2019, 6, 5313–5320.

    Article  CAS  Google Scholar 

  27. Wang, M.; Wang, J. Q.; Xi, C.; Cheng, C. Q.; Kuai, C. G.; Zheng, X. L.; Zhang, R.; Xie, Y. M.; Dong, C. K.; Chen, Y. J. et al. Valence-state effect of iridium dopant in NiFe(OH)2 catalyst for hydrogen evolution reaction. Small 2021, 17, 2100203.

    Article  CAS  Google Scholar 

  28. Wang, L. P.; Zhu, Y. J.; Wen, Y. Z.; Li, S. Y.; Cui, C. Y.; Ni, F. L.; Liu, Y. X.; Lin, H. P.; Li, Y. Y.; Peng, H. S. et al. Regulating the local charge distribution of Ni active sites for the urea oxidation reaction. Angew. Chem., Int. Ed. 2021, 60, 10577–10582.

    Article  CAS  Google Scholar 

  29. Jiang, H.; Sun, M. Z.; Wu, S. L.; Huang, B. L.; Lee, C. S.; Zhang, W. J. Oxygen-incorporated NiMoP nanotube arrays as efficient bifunctional electrocatalysts for urea-assisted energy-saving hydrogen production in alkaline electrolyte. Adv. Funct. Mater. 2021, 31, 2104951.

    Article  CAS  Google Scholar 

  30. Zhang, L. S.; Wang, L. P.; Lin, H. P.; Liu, Y. X.; Ye, J. Y.; Wen, Y. Z.; Chen, A.; Wang, L.; Ni, F. L.; Zhou, Z. Y. et al. A lattice-oxygen-involved reaction pathway to boost urea oxidation. Angew. Chem., Int. Ed. 2019, 58, 16820–16825.

    Article  CAS  Google Scholar 

  31. Singh, R. K.; Schechter, A. Electrochemical investigation of urea oxidation reaction on β Ni(OH)2 and Ni/Ni(OH)2. Electrochim. Acta 2018, 278, 405–411.

    Article  CAS  Google Scholar 

  32. Wang, Q. L.; Xu, C. Q.; Liu, W.; Hung, S. F.; Yang, H. B.; Gao, J. J.; Cai, W. Z.; Chen, H. M.; Li, J.; Liu, B. Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting. Nat. Commun. 2020, 11, 4246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, K.; Liu, C. L.; Graham, N.; Zhang, G.; Yu, W. Z. Modulation of dual centers on cobalt-molybdenum oxides featuring synergistic effect of intermediate activation and radical mediator for electrocatalytic urea splitting. Nano Energy 2021, 87, 106217.

    Article  CAS  Google Scholar 

  34. Zhang, Q. Z.; Bao, N.; Wang, X. Q.; Hu, X. D.; Miao, X. H.; Chaker, M.; Ma, D. L. Advanced fabrication of chemically bonded graphene/TiO2 continuous fibers with enhanced broadband photocatalytic properties and involved mechanisms exploration. Sci. Rep. 2016, 6, 38066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhu, X. J.; Dou, X. Y.; Dai, J.; An, X. D.; Guo, Y. Q.; Zhang, L. D.; Tao, S.; Zhao, J. Y.; Chu, W. S.; Zeng, X. C. et al. Metallic nickel hydroxide nanosheets give superior electrocatalytic oxidation of urea for fuel cells. Angew. Chem., Int. Ed. 2016, 55, 12465–12469.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the National Natural Science Foundation of China (Nos. 51932001, 51872024, 52022097, and 22293043), the National Key Research and Development Program of China (No. 2018YFA0703503), the Foundation of the Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2020048). We thank the BL1W1B in BSRF, BL14W1 and BL11B in SSRF for XAS measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiawei Wan or Ranbo Yu.

Electronic Supplementary Material

12274_2023_6388_MOESM1_ESM.pdf

Nickel-iron in the second coordination shell boost single-atomic-site iridium catalysts for high-performance urea electrooxidation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Wan, J., Chai, J. et al. Nickel-iron in the second coordination shell boost single-atomic-site iridium catalysts for high-performance urea electrooxidation. Nano Res. 17, 3919–3926 (2024). https://doi.org/10.1007/s12274-023-6388-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6388-1

Keywords

Navigation