Skip to main content
Log in

Thermally-triggered grain boundary relaxation in a nanograined Ni-Mo-W alloy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Conventionally, nanograined metals and alloys can be stabilized through segregating foreign elements at grain boundaries (GBs). Yet such an effect may be offset by formation of second phase at elevated temperatures. In this paper, by introducing minor W into a binary Ni-Mo alloy, we found precipitation of intermetallic phases was suppressed, enhancing thermal stability of the nanograined structure. Characterized faceted GBs and a high-fraction of Σ3 coincidence site lattice (CSL) boundaries illustrate that GB structures are relaxed by formation of copious annealing twins. Adding W reduces stacking fault energy of the solid solution and facilitates the thermally-triggered GB relaxation. Suppressed precipitation of the intermetallic phases may be attributed to depletion of solutes at relaxed GBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meyers, M. A.; Mishra, A.; Benson, D. J. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 2006, 57, 427–556.

    Google Scholar 

  2. Lu, K. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat. Rev. Mater. 2016, 7, 16019.

    Google Scholar 

  3. Shan, Z. W.; Stach, E. A.; Wiezorek, J. M. K.; Knapp, J. A.; Follstaedt, D. M.; Mao, S. X. Grain boundary-mediated plasticity in nanocrystalline nickel. Science 2004, 305, 654–657.

    CAS  Google Scholar 

  4. Rupert, T. J.; Gianola, D. S.; Gan, Y.; Hemker, K. J. Experimental observations of stress-driven grain boundary migration. Science 2009, 326, 1686–1690.

    CAS  Google Scholar 

  5. Weissmüller, J. Alloy effects in nanostructures. Nanostruct. Mater. 1993, 3, 261–272.

    Google Scholar 

  6. Kirchheim, R. Grain coarsening inhibited by solute segregation. Acta Mater. 2002, 50, 413–419.

    CAS  Google Scholar 

  7. Chookajorn, T.; Murdoch, H. A.; Schuh, C. A. Design of stable nanocrystalline alloys. Science 2012, 337, 951–954.

    CAS  Google Scholar 

  8. Hu, J.; Shi, Y. N.; Sauvage, X.; Sha, G.; Lu, K. Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science 2017, 355, 1292–1296.

    CAS  Google Scholar 

  9. Hondros, E. D.; Seah, M. P. The theory of grain boundary segregation in terms of surface adsorption analogues. Metall. Trans. A 1977, 8, 1363–1371.

    Google Scholar 

  10. Kalidindi, A. R.; Schuh, C. A. Stability criteria for nanocrystalline alloys. Acta Mater. 2017, 132, 128–137.

    CAS  Google Scholar 

  11. Jiao, Z. B.; Schuh, C. A. Nanocrystalline Ag-W alloys lose stability upon solute desegregation from grain boundaries. Acta Mater. 2018, 767, 194–206.

    Google Scholar 

  12. Zheng, X. G.; Hu, J.; Li, J. X.; Shi, Y. N. Achieving ultrahigh hardness in electrodeposited nanograined Ni-based binary alloys. Nanomaterials (Basel) 2019, 9, 546.

    CAS  Google Scholar 

  13. Schuh, C. A.; Lu, K. Stability of nanocrystalline metals: The role of grain-boundary chemistry and structure. MRS Bull. 2021, 46, 225–235.

    CAS  Google Scholar 

  14. Zhou, X.; Li, X. Y.; Lu, K. Enhanced thermal stability of nanograined metals below a critical grain size. Science 2018, 340, 526–530.

    Google Scholar 

  15. Zhou, X.; Li, X. Y.; Lu, K. Size dependence of grain boundary migration in metals under mechanical loading. Phys. Rev. Lett. 2019, 122, 126101.

    CAS  Google Scholar 

  16. Li, X. Y.; Zhou, X.; Lu, K. Rapid heating induced ultrahigh stability of nanograined copper. Sci. Adv. 2020, 4, eaaz8003.

    Google Scholar 

  17. Xu, W.; Zhang, B.; Du, K.; Li, X. Y.; Lu, K. Thermally stable nanostructured Al-Mg alloy with relaxed grain boundaries. Acta Mater. 2022, 226, 117640.

    CAS  Google Scholar 

  18. Zhang, B. B.; Tang, Y. G.; Mei, Q. S.; Li, X. Y.; Lu, K. Inhibiting creep in nanograined alloys with stable grain boundary networks. Science 2022, 378, 659–663.

    CAS  Google Scholar 

  19. Porter, D. A.; Easterling, K. E.; Sherif, M. Y. Phase Transformations in Metals and Alloys, 3rd ed.; CRC Press: Boca Raton, 2009.

    Google Scholar 

  20. Rittner, J. D.; Seidman, D. N.; Merkle, K. L. Grain-boundary dissociation by the emission of stacking faults. Phys. Rev. B 1996, 53, R4241–R4244.

    CAS  Google Scholar 

  21. Meyers, M. A.; Murr, L. E. A model for the formation of annealing twins in F. C. C. metals and alloys. Acta Metall. 1978, 24, 951–962.

    Google Scholar 

  22. Merkle, K. L. Atomic-scale grain boundary relaxation modes in metals and ceramics. Microsc. Microanal. 1997, 3, 339–351.

    CAS  Google Scholar 

  23. Hu, J.; Shi, Y. N.; Lu, K. Thermal analysis of electrodeposited nano-grained Ni-Mo alloys. Scr. Mater. 2018, 754, 182–185.

    Google Scholar 

  24. Gallagher, P. C. J. The influence of alloying, temperature, and related effects on the stacking fault energy. Metall. Trans. 1970, 1, 2429–2461.

    CAS  Google Scholar 

  25. Shang, S. L.; Zacherl, C. L.; Fang, H. Z.; Wang, Y.; Du, Y.; Liu, Z. K. Effects of alloying element and temperature on the stacking fault energies of dilute Ni-base superalloys. J. Phys. Condens. Matter. 2012, 24, 505403.

    CAS  Google Scholar 

  26. Tiearney, T. C.; Grant, N. J. Measurement of structural parameters important in creep of Ni-Mo and Ni-W solid solutions. Metall. Trans. A 1982, 13, 1827–1836.

    Google Scholar 

  27. Zhao, W. Y.; Li, W.; Sun, Z. M.; Gong, S. K.; Vitos, L. Tuning the plasticity of Ni-Mo solid solution in Ni-based superalloys by ab initio calculations. Mater. Des. 2017, 124, 100–107.

    CAS  Google Scholar 

  28. Johnson, W. R.; Barrett, C. R.; Nix, W. D. The high-temperature creep behavior of nickel-rich Ni-W solid solutions. Metall. Trans. 1972, 3, 963–969.

    CAS  Google Scholar 

  29. Xie, X. S.; Chen, G. L.; McHugh, P. J.; Tien, J. K. Including stacking fault energy into the resisting stress model for creep of particle strengthened alloys. Scr. Metall. 1982, 16, 483–488.

    CAS  Google Scholar 

  30. Hu, J.; Zheng, X. G.; Shi, Y. N.; Lu, K. Effect of a mixture of saccharin and 2-butyne-1,4-diol on electrodeposition of nano-grained Ni-Mo alloys. J. Electrochem. Soc. 2017, 164, D348–D353.

    CAS  Google Scholar 

  31. Schloßmacher, P.; Yamasaki, T. Structural analysis of electroplated amorphous-nanocrystalline Ni-W. Mikrochim. Acta 2000, 132, 309–313.

    Google Scholar 

  32. Xing, W. T.; Kalidindi, A. R.; Amram, D.; Schuh, C. A. Solute interaction effects on grain boundary segregation in ternary alloys. Acta Mater. 2018, 161, 285–294.

    CAS  Google Scholar 

  33. Brooks, C. R.; Spruiell, J. E.; Stansbury, E. E. Physical metallurgy of nickel-molybdenum alloys. Int. Met. Rev. 1984, 29, 210–248.

    CAS  Google Scholar 

  34. Mahajan, S.; Pande, C. S.; Imam, M. A.; Rath, B. B. Formation of annealing twins in f.c.c. crystals. Acta Mater. 1997, 45, 2633–2638.

    CAS  Google Scholar 

  35. Ogata, S.; Li, J.; Yip, S. Ideal pure shear strength of aluminum and copper. Science 2002, 298, 807–811.

    CAS  Google Scholar 

  36. Qi, Y.; Mishra, R. K. Ab initio study of the effect of solute atoms on the stacking fault energy in aluminum. Phys. Rev. B 2007, 75, 224105.

    Google Scholar 

  37. Yu, X. X.; Wang, C. Y. The effect of alloying elements on the dislocation climbing velocity in Ni: A first-principles study. Acta Mater. 2009, 57, 5914–5920.

    CAS  Google Scholar 

  38. Cockayne, D. J. H.; Parsons, J. R.; Hoelke, C. W. A study of the relationship between lattice fringes and lattice planes in electron microscope images of crystals containing defects. Philos. Mag. A J. Theoret. Exp. Appl. Phys. 1971, 24, 139–153.

    CAS  Google Scholar 

  39. Ruff, A. W. Measurement of stacking fault energy from dislocation interactions. Metall. Trans. 1970, 7, 2391–2413.

    Google Scholar 

  40. Balk, T. J.; Hemker, K. J. High resolution transmission electron microscopy of dislocation core dissociations in gold and iridium. Philos. Mag. A 2001, 81, 1507–1531.

    CAS  Google Scholar 

  41. Cai, W.; Nix, W. D. Imperfections in Crystalline Solids; Cambridge University Press: Cambridge, 2016.

    Google Scholar 

  42. Vegard, L. Z. Formation of mixed crystals by solid-phase contact. J. Phys. 1921, 5, 393–395.

    CAS  Google Scholar 

  43. Massalski, T. B. Comments concerning some features of phase diagrams and phase transformations. Mater. Trans. 2010, 51, 583–596.

    CAS  Google Scholar 

  44. Mizutani, U. Hume-Rothery Rules for Structurally Complex Alloy Phases; CRC Press: Boca Raton, 2010.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the Ministry of Science and Technology of China (No. 2017YFA0204401), Liaoning Revitalization Talents Program (No. XLYC1808008), and Liaoning Science and Technology Development Program (No. 2021JH6/10500102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinong Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, D., Li, J., Shi, Y. et al. Thermally-triggered grain boundary relaxation in a nanograined Ni-Mo-W alloy. Nano Res. 16, 12800–12808 (2023). https://doi.org/10.1007/s12274-023-6186-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6186-9

Keywords

Navigation