Skip to main content
Log in

Intentional and unintentional elemental segregation to grain boundaries in a Ni-rich nanocrystalline alloy

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Grain boundary segregation is an important phenomenon for nanocrystalline materials as it influences thermal stability and mechanical properties. While several studies have considered effects of single, intentional segregants, co-segregation of intentional and unintentional segregants to general grain boundaries is not commonly investigated using experimental techniques on the atomic scale. This study utilized aberration-corrected scanning transmission electron microscopy and atom probe tomography to evaluate the grain boundary structure and chemistry of an electroplated and annealed electrodeposited Ni–W alloy. Several phases were observed in the annealed microstructure including elongated nanoscale oxide particles and relatively large impurity carbide phases. Furthermore, grain boundaries regularly exhibited ordered structures, minimal elemental tungsten segregation (intended solute) and impurity carbon segregation (unintentional solute), but moderately high-impurity oxygen segregation (unintentional solute). The unintentional segregated impurities (oxygen and carbon) resulted in a total average grain boundary composition of ~ 10 at.%. The consequence of impurity segregation is discussed in terms of thermal stability and potential mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Gleiter H (1990) Nanocrystalline materials. Prog Mater Sci 33:223–315

    Article  Google Scholar 

  2. Koch CC, Scattergood RO, Saber M, Kotan H (2013) High temperature stabilization of nanocrystalline grain size: thermodynamic versus kinetic strategies. J Mater Res 28:1785–1791. https://doi.org/10.1557/jmr.2012.429

    Article  CAS  Google Scholar 

  3. Weissmuller J (1993) Alloy effects in nanostructures. Nanostructured Mater 3:261–272

    Article  Google Scholar 

  4. Weissmuller J (1994) Alloy thermodynamics in nanostructures. J Mater Res 9:4–7

    Article  Google Scholar 

  5. Krill CE, Ehrhardt H, Birringer R (2005) Thermodynamic stabilization of nanocrystallinity. Z Met 96:1134–1141

    Article  CAS  Google Scholar 

  6. Atwater MA, Darling KA (2012) A visual library of stability in binary metallic systems: the stabilization of nanocrystalline grain size by solute addition—part 1. No. ARL-TR-6007. Army Research Lab Aberdeen Proving Ground MD Weapons and Materials Research Directorate

  7. Saber M, Koch C, Scattergood R (2015) Thermodynamic grain size stabilization models: an overview. Mater Res Lett 3:37–41. https://doi.org/10.1080/21663831.2014.997894

    Article  CAS  Google Scholar 

  8. Darling KA, VanLeeuwen BK, Koch CC, Scattergood RO (2010) Thermal stability of nanocrystalline Fe–Zr alloys. Mater Sci Eng, A 527:3572–3580. https://doi.org/10.1016/j.msea.2010.02.043

    Article  CAS  Google Scholar 

  9. Darling KA, Chan RN, Wong PZ et al (2008) Grain-size stabilization in nanocrystalline FeZr alloys. Scr Mater 59:530–533. https://doi.org/10.1016/j.scriptamat.2008.04.045

    Article  CAS  Google Scholar 

  10. Isomäki I, Hämäläinen M, Braga MH, Gasik M (2017) First principles, thermal stability and thermodynamic assessment of the binary Ni–W system. Int J Mater Res 146:1025–1035. https://doi.org/10.3139/146.111557

    Article  CAS  Google Scholar 

  11. Chookajorn T, Murdoch HA, Schuh CA (2012) Design of stable nanocrystalline alloys. Science 337:951–954. https://doi.org/10.1126/science.1224737

    Article  CAS  Google Scholar 

  12. Chookajorn T, Schuh CA (2014) Nanoscale segregation behavior and high-temperature stability of nanocrystalline W-20 at.% Ti. Acta Mater 73:128–138. https://doi.org/10.1016/j.actamat.2014.03.039

    Article  CAS  Google Scholar 

  13. Kaub T, Thompson GB (2017) Ti segregation in regulating the stress and microstructure evolution in W-Ti nanocrystalline films. J Appl Phys 122:085301. https://doi.org/10.1063/1.4991880

    Article  CAS  Google Scholar 

  14. Cai XC, Song J, Yang TT et al (2018) A bulk nanocrystalline Mg–Ti alloy with high thermal stability and strength. Mater Lett 210:121–123. https://doi.org/10.1016/j.matlet.2017.09.021

    Article  CAS  Google Scholar 

  15. Darnbrough JE, Flewitt PEJ (2014) Growth of abnormal planar faceted grains in nanocrystalline nickel containing impurity sulphur. Acta Mater 79:421–433. https://doi.org/10.1016/j.actamat.2014.05.059

    Article  CAS  Google Scholar 

  16. Natter H, Hempelmann R (2003) Tailor-made nanomaterials designed by electrochemical methods. Electrochim Acta 49:51–61. https://doi.org/10.1016/j.electacta.2003.04.004

    Article  CAS  Google Scholar 

  17. Tang F, Gianola DS, Moody MP et al (2012) Observations of grain boundary impurities in nanocrystalline Al and their influence on microstructural stability and mechanical behaviour. Acta Mater 60:1038–1047. https://doi.org/10.1016/j.actamat.2011.10.061

    Article  CAS  Google Scholar 

  18. Saber M, Kotan H, Koch CC, Scattergood RO (2013) A predictive model for thermodynamic stability of grain size in nanocrystalline ternary alloys. J Appl Phys 114:103510. https://doi.org/10.1063/1.4821040

    Article  CAS  Google Scholar 

  19. Xing W, Kalidindi AR, Schuh CA (2017) Preferred nanocrystalline configurations in ternary and multicomponent alloys. Scr Mater 127:136–140. https://doi.org/10.1016/j.scriptamat.2016.09.014

    Article  CAS  Google Scholar 

  20. Liang T, Chen Z, Yang X et al (2017) The thermodynamic stability induced by solute co-segregation in nanocrystalline ternary alloys. Int J Mat Res 108:435–440

    Article  CAS  Google Scholar 

  21. Huang Z, Chen F, Shen Q, et al (2018) Combined effects of nonmetallic impurities and planned metallic dopants on grain boundary energy and strength. arXiv:1809.02217

  22. Kapoor M, Kaub T, Darling KA et al (2017) An atom probe study on Nb solute partitioning and nanocrystalline grain stabilization in mechanically alloyed Cu–Nb. Acta Mater 126:564–575. https://doi.org/10.1016/j.actamat.2016.12.057

    Article  CAS  Google Scholar 

  23. Choi I, Detor A, Schwaiger R et al (2008) Mechanics of indentation of plastically graded materials—II: experiments on nanocrystalline alloys with grain size gradients. J Mech Phys Solids 56:172–183. https://doi.org/10.1016/j.jmps.2007.07.006

    Article  CAS  Google Scholar 

  24. Detor A, Schuh C (2007) Microstructural evolution during the heat treatment of nanocrystalline alloys. J Mater Res 22:3233–3248. https://doi.org/10.1557/JMR.2007.0403

    Article  CAS  Google Scholar 

  25. Detor A, Schuh CA (2007) Tailoring and patterning the grain size of nanocrystalline alloys. Acta Mater 55:371–379. https://doi.org/10.1016/j.actamat.2006.08.032

    Article  CAS  Google Scholar 

  26. Detor AJ, Schuh CA (2007) Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: atomistic computer simulations in the Ni–W system. Acta Mater 55:4221–4232. https://doi.org/10.1016/j.actamat.2007.03.024

    Article  CAS  Google Scholar 

  27. Detor A, Miller MK, Schuh CA (2007) Measuring grain-boundary segregation in nanocrystalline alloys: direct validation of statistical techniques using atom probe tomography. Philos Mag Lett 87:581–587. https://doi.org/10.1080/09500830701400125

    Article  CAS  Google Scholar 

  28. Detor A, Miller M, Schuh C (2006) Solute distribution in nanocrystalline Ni–W alloys examined through atom probe tomography. Philos Mag 86:4459–4475. https://doi.org/10.1080/14786430600726749

    Article  CAS  Google Scholar 

  29. Cury R, Joubert JM, Tusseau-Nenez S et al (2009) On the existence and the crystal structure of Ni4W, NiW, and NiW2 compounds. Intermetallics 17:174–178

    Article  CAS  Google Scholar 

  30. Borgia C, Scharowsky T, Furrer A et al (2011) A combinatorial study on the influence of elemental composition and heat treatment on the phase composition, microstructure and mechanical properties of Ni–W alloy thin films. Acta Mater 59:386–399. https://doi.org/10.1016/j.actamat.2010.09.045

    Article  CAS  Google Scholar 

  31. Marvel CJ, Cantwell PR, Harmer MP (2015) The critical influence of carbon on the thermal stability of nanocrystalline Ni–W alloys. Scr Mater 96:45–48. https://doi.org/10.1016/j.scriptamat.2014.10.022

    Article  CAS  Google Scholar 

  32. Marvel CJ, Yin D, Cantwell PR, Harmer MP (2016) The influence of oxygen contamination on the thermal stability and hardness of nanocrystalline Ni–W alloys. Mater Sci Eng, A 664:49–57. https://doi.org/10.1016/j.msea.2016.03.129

    Article  CAS  Google Scholar 

  33. Juškėnas R, Valsiūnas I, Pakštas V, Giraitis R (2009) On the state of W in electrodeposited Ni–W alloys. Electrochim Acta 54:2616–2620. https://doi.org/10.1016/j.electacta.2008.10.060

    Article  CAS  Google Scholar 

  34. Yamasaki T, Schlobmacher P, Ehrlich K, Ogino Y (1998) Formation of amorphous electrodeposited Ni–W alloys and their nanocrystallization. Nanostructured Mater 10:375–388

    Article  CAS  Google Scholar 

  35. Gammer C, Mangler C, Rentenberger C, Karnthaler HP (2010) Quantitative local profile analysis of nanomaterials by electron diffraction. Scr Mater 63:312–315. https://doi.org/10.1016/j.scriptamat.2010.04.019

    Article  CAS  Google Scholar 

  36. Mishra NS, Ranganathan S (1995) Electron microscopy and diffraction of ordering in Ni4W alloys. Acta Metall Mater 43:2287–2302. https://doi.org/10.1016/0956-7151(94)00417-X

    Article  CAS  Google Scholar 

  37. Mishra NS, Ranganathan S (1992) Electron microscopy and diffraction of ordering in an off-stoichiometric Ni–W alloy. Scr Metall 27:1337–1342

    Article  CAS  Google Scholar 

  38. Zhou X, Yu X, Kaub T et al (2016) Grain boundary specific segregation in nanocrystalline Fe(Cr). Sci Rep 6:34642. https://doi.org/10.1038/srep34642

    Article  CAS  Google Scholar 

  39. Trelewicz J, Schuh CA (2009) Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys Rev B 79:094112. https://doi.org/10.1103/PhysRevB.79.094112

    Article  CAS  Google Scholar 

  40. Abdeljawad F, Foiles SM (2015) Stabilization of nanocrystalline alloys via grain boundary segregation: a diffuse interface model. Acta Mater 101:159–171. https://doi.org/10.1016/j.actamat.2015.07.058

    Article  CAS  Google Scholar 

  41. Abdeljawad F, Lu P, Argibay N et al (2017) Grain boundary segregation in immiscible nanocrystalline alloys. Acta Mater 126:528–539. https://doi.org/10.1016/j.actamat.2016.12.036

    Article  CAS  Google Scholar 

  42. Li L, Xu W, Saber M et al (2015) Materials Science & Engineering A Long-term stability of 14YT–4Sc alloy at high temperature. Mater Sci Eng, A 647:222–228. https://doi.org/10.1016/j.msea.2015.09.012

    Article  CAS  Google Scholar 

  43. Shahbeigi Roodposhti P, Saber M, Koch C et al (2017) Effect of oxygen content on thermal stability of grain size for nanocrystalline Fe10Cr and Fe14Cr4Hf alloy powders. J Alloys Compd 720:510–520. https://doi.org/10.1016/j.jallcom.2017.05.261

    Article  CAS  Google Scholar 

  44. Xu WZ, Li LL, Saber M et al (2014) Nano ZrO 2 particles in nanocrystalline Fe–14Cr–1.5Zr alloy powders. J Nucl Mater 452:434–439. https://doi.org/10.1016/j.jnucmat.2014.05.067

    Article  CAS  Google Scholar 

  45. Yin D, Marvel CJ, Cui FY et al (2018) Microstructure and fracture toughness of electrodeposited Ni-21 at.% W alloy thick films. Acta Mater 143:272–280. https://doi.org/10.1016/j.actamat.2017.10.001

    Article  CAS  Google Scholar 

  46. Cao W, Marvel CJ, Yin D et al (2016) Correlations between microstructure, fracture morphology, and fracture toughness of nanocrystalline Ni–W alloys. Scr Mater 113:84–88. https://doi.org/10.1016/j.scriptamat.2015.09.030

    Article  CAS  Google Scholar 

  47. Janisch R, Elsässer C (2003) Segregated light elements at grain boundaries in niobium and molybdenum. Phys Rev B - Condens Matter Mater Phys 67:1–11. https://doi.org/10.1103/PhysRevB.67.224101

    Article  CAS  Google Scholar 

  48. Zhang P, Zou T, Zheng Z, Zhao J (2015) Effect of interstitial impurities on grain boundary cohesive strength in vanadium. Comput Mater Sci 110:163–168. https://doi.org/10.1016/j.commatsci.2015.08.028

    Article  CAS  Google Scholar 

  49. Huang Z, Chen F, Shen Q et al (2018) Uncovering the influence of common nonmetallic impurities on the stability and strength of a Σ5 (310) grain boundary in Cu. Acta Mater 148:110–122. https://doi.org/10.1016/j.actamat.2018.01.058

    Article  CAS  Google Scholar 

  50. Aksyonov DA, Hickel T, Lipnitskii AG, Neugebauer J (2016) The impact of carbon and oxygen in alpha-titanium: ab initio study of solution enthalpies and grain boundary segregation. J Phys: Condens Matter 385001:1–23. https://doi.org/10.1088/0953-8984/28/38/385001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Jian Luo and Yuanyao Zhang (University of California,San Diego) for electroplating the Ni–W alloys. The authors are also grateful for financial support from the Office of Naval Research (Grant No. N00014-11-0678) and institutional support from the Army Research Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Marvel.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1669 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marvel, C.J., Hornbuckle, B.C., Darling, K.A. et al. Intentional and unintentional elemental segregation to grain boundaries in a Ni-rich nanocrystalline alloy. J Mater Sci 54, 3496–3508 (2019). https://doi.org/10.1007/s10853-018-3056-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3056-z

Keywords

Navigation