Skip to main content
Log in

Development of Grain Boundary Precipitate-Free Zones in a Ni-Mo-Cr-W Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, the morphology and development of precipitate-free zones (PFZs) near grain boundaries (GBs) in low coefficient of thermal expansion (CTE) Ni-Mo-Cr-W alloys (based on Haynes 244) have been investigated as a function of thermal history and composition using electron microscopy techniques. It is shown that the formation of wide, continuous PFZs adjacent to GBs can be largely attributed to a vacancy depletion mechanism. It is proposed that variations in the vacancy distributions that develop after solution heat treatment (SHT) and subsequent quenching and aging greatly influence the development of the γ′-Ni2(Mo,Cr) precipitates during the aging process and result in the development of PFZs of varying sizes. The relatively large (5 to 10 μm) PFZs are distinct from the smaller, more common PFZs that result from solute depletion due to GB precipitation that are typically observed after prolonged aging. During the course of this investigation, heat treatment parameters, such as aging time, SHT temperature, cooling rate after SHT, and heating rate to the aging temperature—all of which change vacancy concentration and distribution adjacent to GBs—were investigated and observed to have significant influence on both the size and morphology of the observed PFZs. In contrast to results from other Ni-based alloys studied previously, PFZ development in the current alloys was observed across a broad range of aging temperatures. This appears to be due to the high misfit strain energy of the γ′ precipitates, resulting in a nucleation process that is sensitive to vacancy concentration. It is also shown that a slightly modified alloy with higher Mo concentrations develops smaller, more typical PFZs; this is presumably due to an increased driving force for γ′ precipitation which overshadows the influence of misfit strain energy, thereby decreasing the sensitivity of precipitation on vacancy concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. It should be noted that these samples are not truly solution treated at these lower temperatures due to the fact that grain boundary precipitation occurs.

References

  1. [1] T. Krol, D. Baither, E. Nembach, Scripta Mater., 2003, Vol. 48, pp. 1189-94.

    Article  Google Scholar 

  2. S. Hossein Nedjad, M. Nili Ahmadabadi, T. Furuhara: Mater. Sci. Eng. A, 2008, vol. 490, pp. 105–12.

  3. [3] M. Styczyńska, W. Łojkowski, Scripta Metall., 1985, Vol. 19, pp. 1409-13.

    Article  Google Scholar 

  4. [4] Y.J. Bi, M.H. Loretto, Mater. Sci. Eng., A, 1991, Vol. 134, pp. 1188-92.

    Article  Google Scholar 

  5. [5] T. Ogura, S. Hirosawa, A. Cerezo, T. Sato, Acta Mater., 2010, Vol. 58, pp. 5714-23.

    Article  Google Scholar 

  6. [6] T.F. Morgeneyer, M.J. Starink, S.C. Wang, I. Sinclair, Acta Mater., 2008, Vol. 56, pp. 2872-84.

    Article  Google Scholar 

  7. [7] N. Ryum, Acta Metall., 1968, Vol. 16, pp. 327-32.

    Article  Google Scholar 

  8. [8] V. Radmilovic, A.G. Fox, R.M. Fisher, G. Thomas, Scripta Metall., 1989, Vol. 23, pp. 75-79.

    Article  Google Scholar 

  9. [9] S.C. Jha, T.H. Sanders, M.A. Dayananda, Acta Metall., 1987, Vol. 35, pp. 473-82.

    Article  Google Scholar 

  10. [10] T.S. Srivatsan, Mater. Lett., 1986, Vol. 4, pp. 201-06.

    Article  Google Scholar 

  11. [11] S. Chang, J.E. Morral, Acta Metall., 1975, Vol. 23, pp. 685-89.

    Article  Google Scholar 

  12. [12] R. Maldonado, E. Nembach, Acta Mater., 1997, Vol. 45, pp. 213-24.

    Article  Google Scholar 

  13. [13] J.D. Embury, R.B. Nicholson, Acta Metall., 1965, Vol. 13, pp. 403-17.

    Article  Google Scholar 

  14. [14] W.F. Smith, N.J. Grant, Asm Trans. Quarterly, 1969, Vol. 62, pp. 724-28.

    Google Scholar 

  15. [15] A. Tolley, D. Mitlin, V. Radmilovic, U. Dahmen, Mater. Sci. Eng., A, 2005, Vol. 412, pp. 204-13.

    Article  Google Scholar 

  16. [16] P.R. Sperry, Metall. Trans., 1970, Vol. 1, pp. 2650.

    Google Scholar 

  17. [17] G. Xie, J. Zhang, L.H. Lou, Scripta Mater., 2008, Vol. 59, pp. 858-61.

    Article  Google Scholar 

  18. [18] T.D. Nguyen, K. Sawada, H. Kushima, M. Tabuchi, K. Kimura, Mater. Sci. Eng., A, 2014, Vol. 591, pp. 130-35.

    Article  Google Scholar 

  19. [19] D.P. Yao, Y.Z. Zhang, Z.Q. Hu, Y.Y. Li, C.X. Shi, Scripta Metall., 1989, Vol. 23, pp. 537-41.

    Article  Google Scholar 

  20. [20] P.N.T. Unwin, G.W. Lorimer, R.B. Nicholson, Acta Metall., 1969, Vol. 17, pp. 1363-77.

    Article  Google Scholar 

  21. [21] M. Dollar, Scripta Metall., 1986, Vol. 20, pp. 1059-60.

    Article  Google Scholar 

  22. [22] M. Dollar, H. Gleiter, Scripta Metall., 1985, Vol. 19, pp. 481-84.

    Article  Google Scholar 

  23. [23] R.W. Siegel, S.M. Chang, R.W. Balluffi, Acta Metall., 1980, Vol. 28, pp. 249-57.

    Article  Google Scholar 

  24. [24] C. Gottschalk, K. Smidoda, H. Gleiter, Acta Metall., 1980, Vol. 28, pp. 1653-56.

    Article  Google Scholar 

  25. [25] W. Hahn, H. Gleiter, Acta Metall., 1981, Vol. 29, pp. 601-06.

    Article  Google Scholar 

  26. [26] Y.-C. Tzeng, C.-T. Wu, S.-L. Lee, Mater. Lett., 2015, Vol. 161, pp. 340-42.

    Article  Google Scholar 

  27. [27] T. Ogura, S. Hirosawa, T. Sato, Sci. and Tech. Adv. Mater., 2004, Vol. 5, pp. 491-96.

    Article  Google Scholar 

  28. [28] D. Baither, T. Krol, E. Nembach, Mater. Sci. Eng., A, 2004, Vol. 387–389, pp. 163-66.

    Article  Google Scholar 

  29. [29] T. Krol, D. Baither, E. Nembach, Acta Mater., 2004, Vol. 52, pp. 2095-108.

    Article  Google Scholar 

  30. [30] D.H. Bechetti, J.N. Dupont, J.A. Siefert, J.P. Shingledecker, Metall. Mater. Trans. A, 2016, Vol. 47A, pp. 4502-18.

    Article  Google Scholar 

  31. [31] S. Gardner, W. Li, M. Coleman, R. Johnston, Mater. Sci. Eng., A, 2016, Vol. 668, pp. 263-70.

    Article  Google Scholar 

  32. [32] K.A. Rozman, J.J. Kruzic, J.A. Hawk, J. Mater. Eng. Perform., 2015, Vol. 24, pp. 2841-46.

    Article  Google Scholar 

  33. [33] J.G. Yoon, H.W. Jeong, Y.S. Yoo, H.U. Hong, Mater. Charact., 2015, Vol. 101, pp. 49-57.

    Article  Google Scholar 

  34. [34] H.M. Tung, K. Mo, J.F. Stubbins, J. Nucl. Mater., 2014, Vol. 447, pp. 28-37.

    Article  Google Scholar 

  35. E. Stepniowska and S. Dymek: Electron Microscopy Xiv, 2012, pp. 156–59.

  36. [36] S. Dymek, M. Wrobel, M. Dollar, M. Blicharski, J. Microscopy-Oxford, 2006, Vol. 224, pp. 24-26.

    Article  Google Scholar 

  37. [37] M.G. Fahrmann, S.K. Srivastava, L.M. Pike, MATEC Web of Conferences, 2014, Vol. 14, pp. 17004.

    Article  Google Scholar 

  38. [38] U.D. Kulkarni, G.K. Dey, S. Banerjee, Scripta Metall., 1988, Vol. 22, pp. 437-40.

    Article  Google Scholar 

  39. J. Song, R. Field, and M. Kaufman: J. Alloys Compd., 2017, vol. 702, pp. 687-92.

    Article  Google Scholar 

  40. [40] J.W. Cahn, J.D. Pan, R.W. Balluffi, Scripta Metall., 1979, Vol. 13, pp. 503-09.

    Article  Google Scholar 

  41. [41] R.W. Balluffi, J.W. Cahn, Acta Metall., 1981, Vol. 29, pp. 493-500.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Haynes International Inc. for supplying these alloys. In addition, the authors want to acknowledge support of the NSF I/UCRC Center for Advanced Non-Ferrous Structural Alloys and the member companies as well as the use of the instruments in the Electron Microscopy Laboratory at the Colorado School of Mines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Song.

Additional information

Manuscript submitted August 9, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Field, R., Konitzer, D. et al. Development of Grain Boundary Precipitate-Free Zones in a Ni-Mo-Cr-W Alloy. Metall Mater Trans A 48, 2425–2434 (2017). https://doi.org/10.1007/s11661-017-4019-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4019-8

Keywords

Navigation