Skip to main content
Log in

Remote heteroepitaxy of transition metal dichalcogenides through monolayer hexagonal boron nitride

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As a very promising epitaxy technology, the remote epitaxy has attracted extensive attention in recent years, in which graphene is the most used interlayer material. As an isomorphic of graphene, two-dimensional (2D) hexagonal boron nitride (h-BN), is another promising interlayer for the remote epitaxy. However, there is a current debate on the feasibility of using h-BN as interlayer in the remote epitaxy. Herein, we demonstrate that the potential field of sapphire can completely penetrate monolayer h-BN, and hence the remote epitaxy of ZrS2 layers can be realized on sapphire substrates through monolayer h-BN. The field of sapphire can only partially penetrate the bilayer h-BN and result in the mixing of remote epitaxy and van der Waals (vdWs) epitaxy. Due to the weak interfacial scattering and high crystalline quality of ZrS2 epilayer, the ZrS2 photodetector with monolayer h-BN shows the best performance, with an on/off ratio of more than 2 × 105 and a responsivity up to 379 mA·W−1. This work provides an efficient approach to prepare single-crystal transition metal dichalcogenides and their heterojunctions with h-BN, which have great potential in developing large-area 2D electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, H. N.; Li, Y.; Aljarb, A.; Shi, Y. M.; Li, L. J. Epitaxial growth of two-dimensional layered transition-metal dichalcogenides: Growth mechanism, controllability, and scalability. Chem. Rev. 2018, 118, 6134–6150.

    Article  CAS  PubMed  Google Scholar 

  2. Wang, X. S.; Song, Z. G.; Wen, W.; Liu, H. N.; Wu, J. X.; Dang, C. H.; Hossain, M.; Iqbal, M. A.; Xie, L. M. Potential 2D materials with phase transitions: Structure, synthesis, and device applications. Adv. Mater. 2019, 31, 1804682.

    Article  CAS  Google Scholar 

  3. Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359.

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Wu, M.; Xiao, Y. H.; Zeng, Y.; Zhou, Y. L.; Zeng, X. B.; Zhang, L. N.; Liao, W. G. Synthesis of two-dimensional transition metal dichalcogenides for electronics and optoelectronics. InfoMat 2021, 3, 362–396.

    Article  CAS  Google Scholar 

  5. Smithe, K. K. H.; Suryavanshi, S. V.; Rojo, M. M.; Tedjarati, A. D.; Pop, E. Low variability in synthetic monolayer MoS2 devices. ACS Nano 2017, 11, 8456–8463.

    Article  CAS  PubMed  Google Scholar 

  6. Yan, C. Y.; Gong, C. H.; Wangyang, P. H.; Chu, J. W.; Hu, K.; Li, C. B.; Wang, X. P.; Du, X. C.; Zhai, T. Y.; Li, Y. R. et al. 2D group IVB transition metal dichalcogenides. Adv. Funct. Mater. 2018, 28, 1803305.

    Article  Google Scholar 

  7. Zhang, W. X.; Huang, Z. S.; Zhang, W. L.; Li, Y. R. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 2014, 7, 1731–1737.

    Article  CAS  Google Scholar 

  8. Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotech. 2014, 9, 768–779.

    Article  ADS  CAS  Google Scholar 

  9. Tian, Y.; Cheng, Y.; Huang, J. D.; Zhang, S. Y.; Dong, H.; Wang, G. K.; Chen, J. R.; Wu, J. L.; Yin, Z. G.; Zhang, X. W. Epitaxial growth of large area ZrS2 2D semiconductor films on sapphire for optoelectronics. Nano Res. 2022, 15, 6628–6635.

    Article  ADS  CAS  Google Scholar 

  10. Tian, Y.; Zheng, M. Y.; Cheng, Y.; Yin, Z. G.; Jiang, J.; Wang, G. K.; Chen, J. R.; Li, X. X.; Qi, J.; Zhang, X. W. Epitaxial growth of ZrSe2 nanosheets on sapphire via chemical vapor deposition for optoelectronic application. J. Mater. Chem. C 2021, 9, 13954–13962.

    Article  CAS  Google Scholar 

  11. Kim, Y.; Cruz, S. S.; Lee, K.; Alawode, B. O.; Choi, C.; Song, Y.; Johnson, J. M.; Heidelberger, C.; Kong, W.; Choi, S. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 2017, 544, 340–343.

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Kong, W.; Li, H. S.; Qiao, K.; Kim, Y.; Lee, K.; Nie, Y. F.; Lee, D.; Osadchy, T.; Molnar, R. J.; Gaskill, D. K. et al. Polarity governs atomic interaction through two-dimensional materials. Nat. Mater. 2018, 17, 999–1004.

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Ji, J.; Kwak, H. M.; Yu, J.; Park, S.; Park, J. H.; Kim, H.; Kim, S.; Kim, S.; Lee, D. S.; Kum, H. S. Understanding the 2D-material and substrate interaction during epitaxial growth towards successful remote epitaxy: A review. Nano Converg. 2023, 10, 19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim, H.; Chang, C. S.; Lee, S.; Jiang, J.; Jeong, J.; Park, M.; Meng, Y.; Ji, J.; Kwon, Y.; Sun, X. C. et al. Remote epitaxy. Nat. Rev. Methods Primers 2022, 2, 40.

    Article  CAS  Google Scholar 

  15. Roh, I.; Goh, S. H.; Meng, Y.; Kim, J. S.; Han, S.; Xu, Z. H.; Lee, H. E.; Kim, Y.; Bae, S. H. Applications of remote epitaxy and van der Waals epitaxy. Nano Converg. 2023, 10, 20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim, H.; Kim, J. C.; Jeong, Y.; Yu, J.; Lu, K. Y.; Lee, D.; Kim, N.; Jeong, H. Y.; Kim, J.; Kim, S. Role of transferred graphene on atomic interaction of GaAs for remote epitaxy. J. Appl. Phys. 2021, 130, 174901.

    Article  ADS  CAS  Google Scholar 

  17. Han, X.; Yu, J. D.; Li, Z. H.; Wang, X.; Hao, Z. B.; Luo, Y.; Sun, C. Z.; Han, Y. J.; Xiong, B.; Wang, J. et al. Remote epitaxy and exfoliation of GaN via graphene. ACS Appl. Electron. Mater. 2022, 4, 5326–5332.

    Article  CAS  Google Scholar 

  18. Jeong, J.; Wang, Q. X.; Cha, J.; Jin, D. K.; Shin, D. H.; Kwon, S.; Kang, B. K.; Jang, J. H.; Yang, W. S.; Choi, Y. S. et al. Remote heteroepitaxy of GaN microrod heterostructures for deformable light-emitting diodes and wafer recycle. Sci. Adv. 2020, 6, eaaz5180.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qu, Y. P.; Xu, Y.; Cao, B.; Wang, Y. N.; Wang, J. F.; Shi, L.; Xu, K. Long-range orbital hybridization in remote epitaxy: The nucleation mechanism of GaN on different substrates via single-layer graphene. ACS Appl. Mater. Interfaces 2022, 14, 2263–2274.

    Article  CAS  PubMed  Google Scholar 

  20. Qi, Y.; Wang, Y. Y.; Pang, Z. Q.; Dou, Z. P.; Wei, T. B.; Gao, P.; Zhang, S. S.; Xu, X. Z.; Chang, Z. H.; Deng, B. et al. Fast growth of strain-free AlN on graphene-buffered sapphire. J. Am. Chem. Soc. 2018, 140, 11935–11941.

    Article  CAS  PubMed  Google Scholar 

  21. Wang, Y. N.; Qu, Y. P.; Xu, Y.; Li, D. D.; Lu, Z. Q.; Li, J. J.; Su, X. J.; Wang, G. B.; Shi, L.; Zeng, X. H. et al. Modulation of remote epitaxial heterointerface by graphene-assisted attenuative charge transfer. ACS Nano 2023, 17, 4023–4033.

    Article  CAS  PubMed  Google Scholar 

  22. Kim, Y.; Watt, J.; Ma, X. D.; Ahmed, T.; Kim, S.; Kang, K.; Luk, T. S.; Hong, Y. J.; Yoo, J. Fabrication of a microcavity prepared by remote epitaxy over monolayer molybdenum disulfide. ACS Nano 2022, 16, 2399–2406.

    Article  CAS  PubMed  Google Scholar 

  23. Jeong, J.; Min, K. A.; Kang, B. K.; Shin, D. H.; Yoo, J.; Yang, W. S.; Lee, S. W.; Hong, S.; Hong, Y. J. Remote heteroepitaxy across graphene: Hydrothermal growth of vertical ZnO microrods on graphene-coated GaN substrate. Appl. Phys. Lett. 2018, 113, 233103.

    Article  ADS  Google Scholar 

  24. Yoon, H.; Truttmann, T. K.; Liu, F. D.; Matthews, B. E.; Choo, S.; Su, Q.; Saraswat, V.; Manzo, S.; Arnold, M. S.; Bowden, M. E. et al. Freestanding epitaxial SrTiO3 nanomembranes via remote epitaxy using hybrid molecular beam epitaxy. Sci. Adv. 2022, 8, eadd5328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang, J.; Sun, X.; Chen, X. C.; Wang, B. W.; Chen, Z. Z.; Hu, Y.; Guo, Y. W.; Zhang, L. F.; Ma, Y.; Gao, L. et al. Carrier lifetime enhancement in halide perovskite via remote epitaxy. Nat. Commun. 2019, 10, 4145.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  26. Guo, Y. W.; Sun, X.; Jiang, J.; Wang, B. W.; Chen, X. C.; Yin, X.; Qi, W.; Gao, L.; Zhang, L. F.; Lu, Z. H. et al. A reconfigurable remotely epitaxial VO2 electrical heterostructure. Nano Lett. 2020, 20, 33–42.

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Lu, Z. H.; Sun, X.; Xie, W. Y.; Littlejohn, A.; Wang, G. C.; Zhang, S. B.; Washington, M. A.; Lu, T. M. Remote epitaxy of copper on sapphire through monolayer graphene buffer. Nanotechnology 2018, 29, 445702.

    Article  PubMed  Google Scholar 

  28. Zhang, J.; Tan, B. Y.; Zhang, X.; Gao, F.; Hu, Y. X.; Wang, L. F.; Duan, X. M.; Yang, Z. H.; Hu, P. A. Atomically thin hexagonal boron nitride and its heterostructures. Adv. Mater. 2021, 33, 2000769.

    Article  CAS  Google Scholar 

  29. Li, L. H.; Chen, Y. Atomically thin boron nitride: Unique properties and applications. Adv. Funct. Mater. 2016, 26, 2594–2608.

    Article  CAS  Google Scholar 

  30. Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V.; Mayorov, A. S.; Peres, N. M. R. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 2012, 12, 1707–1710.

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Wang, J. L.; Yao, Q.; Huang, C. W.; Zou, X. M.; Liao, L.; Chen, S. S.; Fan, Z. Y.; Zhang, K.; Wu, W.; Xiao, X. H. et al. High mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv. Mater. 2016, 28, 8302–8308.

    Article  CAS  PubMed  Google Scholar 

  32. Fu, D. Y.; Zhao, X. X.; Zhang, Y. Y.; Li, L. J.; Xu, H.; Jang, A. R.; Yoon, S. I.; Song, P.; Poh, S. M.; Ren, T. H. et al. Molecular beam epitaxy of highly crystalline monolayer molybdenum disulfide on hexagonal boron nitride. J. Am. Chem. Soc. 2017, 139, 9392–9400.

    Article  CAS  PubMed  Google Scholar 

  33. Kim, S. M.; Hsu, A.; Park, M. H.; Chae, S. H.; Yun, S. J.; Lee, J. S.; Cho, D. H.; Fang, W. J.; Lee, C.; Palacios, T. et al. Synthesis of large-area multilayer hexagonal boron nitride for high material performance. Nat. Commun. 2015, 6, 8662.

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Kim, H.; Liu, Y. P.; Lu, K. Y.; Chang, C. S.; Sung, D.; Akl, M.; Qiao, K.; Kim, K. S.; Park, B. I.; Zhu, M. L. et al. High-throughput manufacturing of epitaxial membranes from a single wafer by 2D materials-based layer transfer process. Nat. Nanotechnol. 2023, 18, 464–470.

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Li, Q.; Wang, M. D.; Bai, Y. H.; Zhang, Q. F.; Zhang, H. R.; Tian, Z. H.; Guo, Y. N.; Zhu, J. P.; Liu, Y. H.; Yun, F. et al. Two-inch wafer-scale exfoliation of hexagonal boron nitride films fabricated by RF-sputtering. Adv. Funct. Mater. 2022, 32, 2206094.

    Article  CAS  Google Scholar 

  36. Mattinen, M.; Popov, G.; Vehkamäki, M.; King, P. J.; Mizohata, K.; Jalkanen, P.; Räisanen, J.; Leskelä, M.; Ritala, M. Atomic layer deposition of emerging 2D semiconductors, HfS2 and ZrS2, for optoelectronics. Chem. Mater. 2019, 31, 5713–5724.

    Article  CAS  Google Scholar 

  37. Jang, A. R.; Hong, S.; Hyun, C.; Yoon, S. I.; Kim, G.; Jeong, H. Y.; Shin, T. J.; Park, S. O.; Wong, K.; Kwak, S. K. et al. Wafer-scale and wrinkle-free epitaxial growth of single-orientated multilayer hexagonal boron nitride on sapphire. Nano Lett. 2016, 16, 3360–3366.

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Wang, G. K.; Huang, J. D.; Zhang, S. Y.; Meng, J. H.; Chen, J. R.; Shi, Y. M.; Jiang, J.; Li, J. Z.; Cheng, Y.; Zeng, L. B. et al. Wafer-scale single crystal hexagonal boron nitride layers grown by submicron-spacing vapor deposition. Small 2023, 19, 2301086.

    Article  CAS  Google Scholar 

  39. Yan, C. Y.; Gan, L.; Zhou, X.; Guo, J.; Huang, W. J.; Huang, J. W.; Jin, B.; Xiong, J.; Zhai, T. Y.; Li, Y. R. Space-confined chemical vapor deposition synthesis of ultrathin HfS2 flakes for optoelectronic application. Adv. Funct. Mater. 2017, 27, 1702918.

    Article  Google Scholar 

  40. Fang, H. H.; Hu, W. D. Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323.

    Article  Google Scholar 

  41. Zeng, L. H.; Wu, D.; Lin, S. H.; Xie, C.; Yuan, H. Y.; Lu, W.; Lau, S. P.; Chai, Y.; Luo, L. B.; Li, Z. J. et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 2019, 29, 1806878.

    Article  Google Scholar 

  42. Moustafa, M.; Zandt, T.; Janowitz, C.; Manzke, R. Growth and band gap determination of the ZrSxSe2–x single crystal series. Phys. Rev. B 2009, 80, 035206.

    Article  ADS  Google Scholar 

  43. Abdulsalam, M.; Joubert, D. P. Optical spectrum and excitons in bulk and monolayer MX2 (M = Zr, Hf; X = S, Se). Phys. Status Solidi B 2016, 253, 705–711.

    Article  ADS  CAS  Google Scholar 

  44. Ahmad, S.; D’Souza, R.; Mukherjee, S. Band gap modulation of ZrX2 (X = S, Se, Te) mono-layers under biaxial strain and transverse electric field and its lattice dynamic properties: A first principles study. Mater. Res. Express 2019, 6, 036308.

    Article  ADS  Google Scholar 

  45. Li, L.; Fang, X. S.; Zhai, T. Y.; Liao, M. Y.; Gautam, U. K.; Wu, X. C.; Koide, Y.; Bando, Y.; Golberg, D. Electrical transport and high-performance photoconductivity in individual ZrS2 nanobelts. Adv. Mater. 2010, 22, 4151–4156.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 62274151 and 61874106), the Natural Science Foundation of Beijing Municipality (No. 4212045), and the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB43000000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingwang Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Chen, J., Meng, J. et al. Remote heteroepitaxy of transition metal dichalcogenides through monolayer hexagonal boron nitride. Nano Res. 17, 3224–3231 (2024). https://doi.org/10.1007/s12274-023-6171-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6171-3

Keywords

Navigation