Skip to main content
Log in

Enhanced fluorescence sensing of tetracycline with Ti2C quantum dots

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ti2C quantum dots (QDs) with rich surface functional groups have been synthesized using a hydrothermal method, and used to detect tetracycline (Tc) based on enhanced fluorescence. The interaction between the surface functional groups of Ti2C QDs and Tc enhanced the fluorescence of Tc at 514 nm, which is used to detect Tc quickly and accurately. Under optimal conditions, the fluorescence intensity was linear to the concentration of Tc in the range of 50.0–30.0 μM, with a detection limit of 21.6 nM. Furthermore, the Tc-Ti2C QDs detection system was evaluated for detection of Tc in milk and artificial urine. This study demonstrates a new and simple strategy for Tc detection, which is important for food safety and human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feng, L. X.; Huo, Z. Z.; Xiong, J. P.; Li, H. M. Certification of amyloid-beta (Aβ) certified reference materials by amino acid-based isotope dilution high-performance liquid chromatography mass spectrometry and sulfur-based high-performance liquid chromatography isotope dilution inductively coupled plasma mass spectrometry. Anal. Chem. 2020, 92, 13229–13237.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, Y. L.; Hassan, M.; Rong, Y. W.; Liu, R.; Li, H. H.; Ouyang, Q.; Chen, Q. S. An upconversion nanosensor for rapid and sensitive detection of tetracycline in food based on magnetic-field-assisted separation. Food Chem. 2022, 373, 131497.

    Article  CAS  PubMed  Google Scholar 

  3. Gossen, M.; Freundlieb, S.; Bender, G.; Müller, G.; Hillen, W.; Bujard, H. Transcriptional activation by tetracyclines in mammalian cells. Science 1995, 268, 1766–1769.

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Nolivos, S.; Cayron, J.; Dedieu, A.; Page, A.; Delolme, F.; Lesterlin, C. Role of AcrAB-TolC multidrug efflux pump in drug-resistance acquisition by plasmid transfer. Science 2019, 364, 778–782.

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Chopra, I.; Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yu, J. F.; Tang, L.; Pang, Y.; Zeng, G. M.; Wang, J. J.; Deng, Y. C.; Liu, Y. N.; Feng, H. P.; Chen, S.; Ren, X. Y. Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: Internal electron transfer mechanism. Chem. Eng. J. 2019, 364, 146–159.

    Article  CAS  Google Scholar 

  7. Daghrir, R.; Drogui, P. Tetracycline antibiotics in the environment: A review. Environ. Chem. Lett. 2013, 11, 209–227.

    Article  CAS  Google Scholar 

  8. Jia, L.; Chen, R. J.; Xu, J.; Zhang, L. N.; Chen, X. Z.; Bi, N.; Gou, J.; Zhao, T. Q. A stick-like intelligent multicolor nano-sensor for the detection of tetracycline: The integration of nano-clay and carbon dots. J. Hazard. Mater. 2021, 413, 125296.

    Article  CAS  PubMed  Google Scholar 

  9. Wang, X. N.; Jia, J. P.; Wang, Y. L. Combination of photocatalysis with hydrodynamic cavitation for degradation of tetracycline. Chem. Eng. J. 2017, 315, 274–282.

    Article  CAS  Google Scholar 

  10. Zhang, P. Z.; Li, Y. F.; Cao, Y. Y.; Han, L. J. Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures. Bioresour. Technol. 2019, 285, 121348.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, Q. C.; Jiang, L.; Wang, J.; Zhu, Y. F.; Pu, Y. J.; Dai, W. D. Photocatalytic degradation of tetracycline antibiotics using three-dimensional network structure perylene diimide supramolecular organic photocatalyst under visible-light irradiation. Appl. Catal. B: Environ. 2020, 277, 119122.

    Article  CAS  Google Scholar 

  12. Ni, J. X.; Wang, W.; Liu, D. M.; Zhu, Q.; Jia, J. L.; Tian, J. Y.; Li, Z. Y.; Wang, X.; Xing, Z. P. Oxygen vacancy-mediated sandwich-structural TiO2–x/ultrathin g-C3N4/TiO2–x direct Z-scheme heterojunction visible-light-driven photocatalyst for efficient removal of high toxic tetracycline antibiotics. J. Hazard. Mater. 2021, 408, 124432.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, L.; Chen, L. G. Fluorescence probe based on hybrid mesoporous silica/quantum dot/molecularly imprinted polymer for detection of tetracycline. ACS Appl. Mater. Interfaces 2016, 8, 16248–16256.

    Article  CAS  PubMed  Google Scholar 

  14. Gao, X.; Niu, J.; Wang, Y. F.; Ji, Y.; Zhang, Y. L. Solar photocatalytic abatement of tetracycline over phosphate oxoanion decorated Bi2WO6/polyimide composites. J. Hazard. Mate. 2021, 403, 123860.

    Article  CAS  Google Scholar 

  15. Wang, J. X.; Cheng, R. J.; Wang, Y. Y.; Sun, L.; Chen, L.; Dai, X. H.; Pan, J. M.; Pan, G. Q.; Yan, Y. S. Surface-imprinted fluorescence microspheres as ultrasensitive sensor for rapid and effective detection of tetracycline in real biological samples. Sens. Actuators B: Chem. 2018, 263, 533–542.

    Article  CAS  Google Scholar 

  16. Yang, X. M.; Luo, Y. W.; Zhu, S. S.; Feng, Y. J.; Zhuo, Y.; Dou, Y. One-pot synthesis of high fluorescent carbon nanoparticles and their applications as probes for detection of tetracyclines. Biosens. Bioelectron. 2014, 56, 6–11.

    Article  CAS  PubMed  Google Scholar 

  17. Wu, Z. T.; Zhou, Y. B.; Huang, H. Y.; Su, Z. E.; Chen, S. M.; Rong, M. C. BCNO QDs and ROS synergistic oxidation effect on fluorescence enhancement sensing of tetracycline. Sens. Actuators B: Chem. 2021, 332, 129530.

    Article  CAS  Google Scholar 

  18. Ramezani, M.; Mohammad Danesh, N.; Lavaee, P.; Abnous, K.; Mohammad Taghdisi, S. A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline. Biosens. Bioelectron. 2015, 70, 181–187.

    Article  CAS  PubMed  Google Scholar 

  19. Wang, W. J.; Zeng, Z. T.; Zeng, G. M.; Zhang, C.; Xiao, R.; Zhou, C. Y.; Xiong, W. P.; Yang, Y.; Lei, L.; Liu, Y. et al. Sulfur doped carbon quantum dots loaded hollow tubular g-C3N4 as novel photocatalyst for destruction of Escherichia coli and tetracycline degradation under visible light. Chem. Eng. J. 2019, 378, 122132.

    Article  CAS  Google Scholar 

  20. Liu, X. G.; Huang, D. L.; Lai, C.; Zeng, G. M.; Qin, L.; Zhang, C.; Yi, H.; Li, B. S.; Deng, R.; Liu, S. Y. et al. Recent advances in sensors for tetracycline antibiotics and their applications. TrAC Trends Analyt. Chem. 2018, 109, 260–274.

    Article  CAS  Google Scholar 

  21. Tan, H. L.; Chen, Y. Silver nanoparticle enhanced fluorescence of europium(III) for detection of tetracycline in milk. Sens. Actuators B: Chem. 2012, 173, 262–267.

    Article  CAS  Google Scholar 

  22. Zhou, Z.; Wang, Q. M.; Wang, J. Y.; Zhang, C. C. Imaging two targets in live cells based on rational design of lanthanide organic structure appended carbon dots. Carbon 2015, 93, 671–680.

    Article  CAS  Google Scholar 

  23. Xue, Q.; Zhang, H. J.; Zhu, M. S.; Pei, Z. X.; Li, H. F.; Wang, Z. F.; Huang, Y.; Huang, Y.; Deng, Q. H.; Zhou, J. et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv. Mater. 2017, 29, 1604847.

    Article  Google Scholar 

  24. Xu, G. F.; Niu, Y. S.; Yang, X. C.; Jin, Z. Y.; Wang, Y.; Xu, Y. H.; Niu, H. T. Preparation of Ti3C2Tx MXene-derived quantum dots with white/blue-emitting photoluminescence and electrochemiluminescence. Adv. Opt. Mater. 2018, 6, 1800951.

    Article  Google Scholar 

  25. Zhou, X.; Qin, Y.; He, X. X.; Li, Q.; Sun, J.; Lei, Z. B.; Liu, Z. H. Ti3C2Tx nanosheets/Ti3C2Tx quantum dots/rGO (reduced graphene oxide) fibers for an all-solid-state asymmetric supercapacitor with high volume energy density and good flexibility. ACS Appl. Mater. Interfaces 2020, 12, 11833–11842.

    Article  CAS  PubMed  Google Scholar 

  26. Wang, L. F.; Zhang, N. N.; Li, Y.; Kong, W. H.; Gou, J. Y.; Zhang, Y. J.; Wang, L. N.; Yu, G. H.; Zhang, P.; Cheng, H. H. et al. Mechanism of nitrogen-doped Ti3C2 quantum dots for free-radical scavenging and the ultrasensitive H2O2 detection performance. ACS Appl. Mater. Interfaces 2021, 13, 42442–42450.

    Article  CAS  PubMed  Google Scholar 

  27. Guo, Z.; Zhu, X. H.; Wang, S. G.; Lei, C. Y.; Huang, Y.; Nie, Z.; Yao, S. Z. Fluorescent Ti3C2 MXene quantum dots for an alkaline phosphatase assay and embryonic stem cell identification based on the inner filter effect. Nanoscale 2018, 10, 19579–19585.

    Article  CAS  PubMed  Google Scholar 

  28. Xu, Q.; Ding, L.; Wen, Y. Y.; Yang, W. J.; Zhou, H. J.; Chen, X. Z.; Street, J.; Zhou, A.; Ong, W. J.; Li, N. High photoluminescence quantum yield of 18.7% by using nitrogen-doped Ti3C2 MXene quantum dots. J. Mater. Chem. C 2018, 6, 6360–6369.

    Article  CAS  Google Scholar 

  29. Chen, X.; Li, J.; Pan, G. C.; Xu, W.; Zhu, J. Y.; Zhou, D. L.; Li, D. Y.; Chen, C.; Lu, G. Y.; Song, H. W. Ti3C2 MXene quantum dots/TiO2 inverse opal heterojunction electrode platform for superior photoelectrochemical biosensing. Sens. Actuators B: Chem. 2019, 289, 131–137.

    Article  CAS  Google Scholar 

  30. Shao, B. B.; Liu, Z. F.; Zeng, G. M.; Wang, H.; Liang, Q. H.; He, Q. Y.; Cheng, M.; Zhou, C. Y.; Jiang, L. B.; Song, B. Two-dimensional transition metal carbide and nitride (MXene) derived quantum dots (QDs): Synthesis, properties, applications and prospects. J. Mater. Chem. A 2020, 8, 7508–7535.

    Article  CAS  Google Scholar 

  31. Wang, H. M.; Zhao, R.; Hu, H. X.; Fan, X. W.; Zhang, D. J.; Wang, D. 0D/2D heterojunctions of Ti3C2 MXene QDs/SiC as an efficient and robust photocatalyst for boosting the visible photocatalytic NO pollutant removal ability. ACS Appl. Mater. Interfaces 2020, 12, 40176–40185.

    Article  CAS  PubMed  Google Scholar 

  32. Tang, R.; Zhou, S. J.; Li, C. X.; Chen, R.; Zhang, L. Y.; Zhang, Z. W.; Yin, L. W. Janus-structured co-Ti3C2 MXene quantum dots as a schottky catalyst for high-performance photoelectrochemical water oxidation. Adv. Funct. Mater. 2020, 30, 2000637.

    Article  CAS  Google Scholar 

  33. Sun, J. Z.; Du, H.; Chen, Z. J.; Wang, L. L.; Shen, G. Z. MXene quantum dot within natural 3D watermelon peel matrix for biocompatible flexible sensing platform. Nano Res. 2022, 15, 3653–3659.

    Article  CAS  ADS  Google Scholar 

  34. Gao, X. H.; Shao, X. C.; Qin, L. L.; Li, Y. J.; Huang, S. X.; Deng, L. W. N,N-dimethylformamide regulating fluorescence of MXene quantum dots for the sensitive determination of Fe3+. Nanoscale Res. Lett. 2021, 16, 160.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. Lu, S. Y.; Sui, L. Z.; Liu, Y.; Yong, X.; Xiao, G. J.; Yuan, K. J.; Liu, Z. Y.; Liu, B. Z.; Zou, B.; Yang, B. White photoluminescent Ti3C2 MXene quantum dots with two-photon fluorescence. Adv. Sci. 2019, 6, 1801470.

    Article  Google Scholar 

  36. Bai, Y. X.; He, Y.; Wang, M. M.; Song, G. W. Microwave-assisted synthesis of nitrogen, phosphorus-doped Ti3C2 MXene quantum dots for colorimetric/fluorometric dual-modal nitrite assay with a portable smartphone platform. Sens. Actuators B: Chem. 2022, 357, 131410.

    Article  CAS  Google Scholar 

  37. Liu, Y. H.; Zhang, W.; Zheng, W. T. Quantum dots compete at the acme of MXene family for the optimal catalysis. Nano-Micro Lett. 2022, 14, 158.

    Article  ADS  Google Scholar 

  38. Wang, H.; Wu, Y.; Yuan, X. Z.; Zeng, G. M.; Zhou, J.; Wang, X.; Chew, J. W. Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: State-of-the-art progresses and challenges. Adv. Mater. 2018, 30, 1704561.

    Article  Google Scholar 

  39. Zhang, T.; Zhang, L.; Hou, Y. L. MXenes: Synthesis strategies and lithium-sulfur battery applications. eScience 2022, 2, 164–182.

    Article  CAS  Google Scholar 

  40. Zhang, S. L.; Ying, H. J.; Huang, P. F.; Yang, T. T.; Han, W. W. Hierarchical utilization of raw Ti3C2Tx MXene for fast preparation of various Ti3C2Tx MXene derivatives. Nano Res. 2022, 15, 2746–2755.

    Article  CAS  ADS  Google Scholar 

  41. Guo, X.; Wang, C. D.; Wang, W. J.; Zhou, Q.; Xu, W. J.; Zhang, P. J.; Wei, S. Q.; Cao, Y. Y.; Zhu, K. F.; Liu, Z. F. et al. Vacancy manipulating of molybdenum carbide MXenes to enhance Faraday reaction for high performance lithium-ion batteries. Nano Res. Energy 2022, 1, e9120026.

    Article  Google Scholar 

  42. Jiang, S. Z.; Hu, D. J.; Qi, Z. J.; Wang, L. F.; Li, Y. V2CTx MXene nanosheets as enhanced free-radical scavengers for alleviating oxidative stress. ACS Appl. Nano Mater. 2023, 6, 3121–3127.

    Article  CAS  Google Scholar 

  43. Sariga; Babu, A. M.; Kumar, S. V. S.; Rajeev, R.; Thadathil, D. A.; Varghese, A. New horizons in the synthesis, properties, and applications of MXene quantum dots. Adv. Mater. Interfaces 2023, 10, 2202139.

    Article  CAS  Google Scholar 

  44. Xue, Q.; Pei, Z. X.; Huang, Y.; Zhu, M. S.; Tang, Z. J.; Li, H. F.; Huang, Y.; Li, N.; Zhang, H. Y.; Zhi, C. Y. Mn3O4 nanoparticles on layer-structured Ti3C2 MXene towards the oxygen reduction reaction and zinc-air batteries. J. Mater. Chem. A 2017, 5, 20818–20823.

    Article  CAS  Google Scholar 

  45. Zango, Z. U.; Jumbri, K.; Sambudi, N. S.; Bakar, N. H. H. A.; Abdullah, N. A. F.; Basheer, C.; Saad, B. Removal of anthracene in water by MIL-88(Fe), NH2-MIL-88(Fe), and mixed-MIL-88(Fe) metal-organic frameworks. RSC Adv. 2019, 9, 41490–41501.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  46. Rezaei, A.; Hadian-Dehkordi, L.; Samadian, H.; Jaymand, M.; Targhan, H.; Ramazani, A.; Adibi, H.; Deng, X. L.; Zheng, L. X.; Zheng, H. J. Pseudohomogeneous metallic catalyst based on tungstate-decorated amphiphilic carbon quantum dots for selective oxidative scission of alkenes to aldehyde. Sci. Rep. 2021, 11, 4411.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. Yue, F. L.; Liu, M. Y.; Bai, M. Y.; Hu, M. J.; Li, F. L.; Guo, Y. M.; Vrublevsky, I.; Sun, X. Novel electrochemical aptasensor based on ordered mesoporous carbon/2D Ti3C2 MXene as nanocarrier for simultaneous detection of aminoglycoside antibiotics in milk. Biosensors 2022, 12, 626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xia, Y.; Que, L. F.; Yu, F. D.; Deng, L.; Liang, Z. J.; Jiang, Y. S.; Sun, M. Y.; Zhao, L.; Wang, Z. B. Tailoring nitrogen terminals on MXene enables fast charging and stable cycling Na-ion batteries at low temperature. Nano-Micro Lett. 2022, 14, 143.

    Article  CAS  ADS  Google Scholar 

  49. Gou, J. Y.; Zhao, L.; Li, Y.; Zhang, J. Z. Nitrogen-doped Ti2C MXene quantum dots as antioxidants. ACS Appl. Nano Mater. 2021, 4, 12308–12315.

    Article  CAS  Google Scholar 

  50. Nelson, M.; Hillen, W.; Greenwald, R. A. Tetracyclines in Biology, Chemistry and Medicine; Birkhäuser Basel: Basel, 2001; pp 82–83.

    Book  Google Scholar 

  51. Morrison, H.; Olack, G.; Xiao, C. H. Organic photochemistry. 93. Photochemical and photophysical studies of tetracycline. J. Am. Chem. Soc. 1991, 113, 8110–8118.

    Article  CAS  Google Scholar 

  52. Jin, X.; Xu, H. Z.; Qiu, S. S.; Jia, M. Y.; Wang, F.; Zhang, A. Q.; Jiang, X. Direct photolysis of oxytetracycline: Influence of initial concentration, pH and temperature. J. Photochem. Photobiol. A:Chem. 2017, 332, 224–231.

    Article  CAS  Google Scholar 

  53. Carlotti, B.; Fuoco, D.; Elisei, F. Fast and ultrafast spectroscopic investigation of tetracycline derivatives in organic and aqueous media. Phys. Chem. Chem. Phys. 2010, 12, 15580–15591.

    Article  CAS  PubMed  Google Scholar 

  54. Huang, D.; Wu, J. Z.; Wang, L.; Liu, X. M.; Meng, J.; Tang, X. J.; Tang, C. X.; Xu, J. M. Novel insight into adsorption and co-adsorption of heavy metal ions and an organic pollutant by magnetic graphene nanomaterials in water. Chem. Eng. J. 2019, 358, 1399–1409.

    Article  CAS  Google Scholar 

  55. Peng, A. P.; Wang, C.; Zhang, Z. H.; Jin, X.; Gu, C.; Chen, Z. Y. Tetracycline photolysis revisited: Overlooked day-night succession of the parent compound and metabolites in natural surface waters and associated ecotoxicity. Water Res. 2022, 225, 119197.

    Article  CAS  PubMed  Google Scholar 

  56. Mojica, E. R. E.; Nguyen, E.; Rozov, M.; Bright, F. V. pH-dependent spectroscopy of tetracycline and its analogs. J. Fluoresc. 2014, 24, 1183–1198.

    Article  CAS  PubMed  Google Scholar 

  57. Abbasi, M. M.; Babaei, H.; Ansarin, M.; Nourdadgar, A. O. S.; Nemati, M. Simultaneous determination of tetracyclines residues in bovine milk samples by solid phase extraction and HPLC-FL method. Adv. Pharm. Bull., 2011, 1, 34–39.

    Google Scholar 

  58. Shirani, M. P.; Rezaei, B.; Ensafi, A. A.; Ramezani, M. Development of an eco-friendly fluorescence nanosensor based on molecularly imprinted polymer on silica-carbon quantum dot for the rapid indoxacarb detection. Food Chem. 2021, 339, 127920.

    Article  CAS  PubMed  Google Scholar 

  59. Hu, X. L.; Zhao, Y. Q.; Dong, J. Y.; Liu, C.; Qi, Y.; Fang, G. Z.; Wang, S. A strong blue fluorescent nanoprobe based on Mg/N co-doped carbon dots coupled with molecularly imprinted polymer for ultrasensitive and highly selective detection of tetracycline in animal-derived foods. Sens. Actuators B: Chem. 2021, 338, 129809.

    Article  CAS  Google Scholar 

  60. Zhang, S. Q.; Sun, Q. X.; Liu, X.; Li, H. Y.; Wang, J. H.; Chen, M. L. Ratiometric fluorescence detection of tetracycline for tetracycline adjuvant screening in bacteria. Sens. Actuators B: Chem. 2022, 372, 132687.

    Article  CAS  Google Scholar 

  61. Li, R. X.; Wang, W. J.; El-Sayed, E. S. M.; Su, K. Z.; He, P. L.; Yuan, D. Q. Ratiometric fluorescence detection of tetracycline antibiotic based on a polynuclear lanthanide metal-organic framework. Sens. Actuators B: Chem. 2021, 330, 129314.

    Article  CAS  Google Scholar 

  62. Yao, R. H.; Li, Z. J.; Liu, G.; Fan, C. B.; Pu, S. Z. Luminol-Eu-based ratiometric fluorescence probe for highly selective and visual determination of tetracycline. Talanta 2021, 234, 122612.

    Article  CAS  PubMed  Google Scholar 

  63. Gan, Z. Y.; Hu, X. T.; Xu, X. C.; Zhang, W.; Zou, X. B.; Shi, J. Y.; Zheng, K. Y.; Arslan, M. A portable test strip based on fluorescent europium-based metal-organic framework for rapid and visual detection of tetracycline in food samples. Food Chem. 2021, 354, 129501.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22175019 and 52002007), the Fundamental Research Funds for the Central Universities, and the Youth Teacher International Exchange & Growth Program (No. QNXM20220019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Jiang, S., Xia, T. et al. Enhanced fluorescence sensing of tetracycline with Ti2C quantum dots. Nano Res. 17, 3180–3188 (2024). https://doi.org/10.1007/s12274-023-6134-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6134-8

Keywords

Navigation